Loss of dystrophin and the microtubule-binding protein ELP-1 causes progressive paralysis and death of adult C. elegans

View/ Open
Issue Date
2009-08Author
Hueston, Jennifer L.
Suprenant, Kathy A.
Publisher
Wiley
Type
Article
Article Version
Scholarly/refereed, author accepted manuscript
Metadata
Show full item recordAbstract
EMAP-like proteins (ELPs) are conserved microtubule-binding proteins that function during cell division and in the behavior of post-mitotic cells. In C. elegans, ELP-1 is broadly expressed in many cells and tissues including the touch receptor neurons and body wall muscle. Within muscle, ELP-1 is associated with a microtubule network that is closely opposed to the integrin-based adhesion sites called dense bodies. To examine ELP-1 function we utilized an elp-1 RNA interference assay and screened for synthetic interactions with mutated adhesion site proteins. We reveal a synthetic lethal relationship between ELP-1 and the dystrophin-like protein, DYS-1. Reduction of ELP-1 in a dystrophin [dys-1(cx18)] mutant results in adult animals with motility defects, splayed and hypercontracted muscle with altered cholinergic signaling. Worms fill with vesicles, become flaccid and die. We conclude that ELP-1 is a genetic modifier of a C. elegans model of muscular dystrophy.
Description
This is the peer reviewed version of the following article: Hueston, J. L. and Suprenant, K. A. (2009), Loss of dystrophin and the microtubule-binding protein ELP-1 causes progressive paralysis and death of adult C. elegans. Dev. Dyn., 238: 1878–1886. doi:10.1002/dvdy.22007, which has been published in final form at http://doi.org/10.1002/dvdy.22007. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.
Collections
Citation
Hueston, J. L. and Suprenant, K. A. (2009), Loss of dystrophin and the microtubule-binding protein ELP-1 causes progressive paralysis and death of adult C. elegans. Dev. Dyn., 238: 1878–1886. doi:10.1002/dvdy.22007
Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.