KUKU

KU ScholarWorks

  • myKU
  • Email
  • Enroll & Pay
  • KU Directory
    • Login
    View Item 
    •   KU ScholarWorks
    • Dissertations and Theses
    • Dissertations
    • View Item
    •   KU ScholarWorks
    • Dissertations and Theses
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Regulation of the Pregnane X Receptor Signaling Pathway

    Thumbnail
    View/Open
    LichtiKaiser_ku_0099D_10263_DATA_1.pdf (3.746Mb)
    Issue Date
    2009-04-23
    Author
    Lichti-Kaiser, Kristin Nicole
    Publisher
    University of Kansas
    Format
    310 pages
    Type
    Dissertation
    Degree Level
    Ph.D.
    Discipline
    Pharmacology & Toxicology
    Rights
    This item is protected by copyright and unless otherwise specified the copyright of this thesis/dissertation is held by the author.
    Metadata
    Show full item record
    Abstract
    Liver-enriched nuclear receptors (NRs) collectively function as metabolic and toxicological `sensors' that mediate liver-specific gene-activation in mammals. NR-mediated gene-environment interaction regulates important steps in the hepatic uptake, metabolism and excretion of glucose, fatty acids, lipoproteins, cholesterol, bile acids, and xenobiotics. While it is well-recognized that ligand-binding is the primary mechanism behind activation of NRs, recent research is revealing that multiple signal transduction pathways modulate NR-function in liver. The interface between specific signal transduction pathways and NRs helps to determine their overall responsiveness to various environmental and physiological stimuli. The pregnane x receptor (PXR, NR1I2) was identified in 1998 as a member of the NR superfamily of ligand-activated transcription factors. PXR is activated by a broad range of lipophilic compounds in a species-specific manner. The primary function ascribed to PXR is the homeostatic control of steroids, bile acids, and xenobiotics. This function is mediated through PXR's ability to coordinately activate gene expression and regulate the subsequent activity of phase I and phase II metabolic enzymes, as well as several membrane transporter proteins. While PXR likely evolved primarily to protect the liver from toxic assault, its activation also represents the molecular basis for an important class of drug-drug, herb-drug, and food-drug interactions. While ligand binding is the primary mode of PXR activation, several signal transduction pathways interface with the PXR protein to determine its overall responsiveness to environmental stimuli. Multiple signaling pathways modulate the activity of PXR, likely through direct alteration of the phosphorylation status of the receptor and its protein cofactors. Therefore, specific combinations of ligand binding and cell signaling pathways affect PXR-mediated gene activation and determine the overall biological response. This dissertation contributes to the molecular understanding of the regulation of PXR by novel agonists, cAMP-dependent protein kinase (PKA) signaling, and phosphorylation. The results presented here were primarily obtained from mouse and tissue culture systems. This dissertation identifies Tian Xian, a traditional Chinese herbal anti-cancer remedy, as a novel PXR activator. This evidence suggests that Tian Xian should be used cautiously by cancer patients taking chemotherapy due to its potential to increase the metabolism of co-administered medications. In addition, data presented here show that activation of PKA signaling modulates PXR activity in a species-specific manner. It is further revealed that PXR exists as phospho-protein in vivo and that the activation of PKA signaling modulates the phospho-threonine status of PXR. Finally, the potential phosphorylation sites within the PXR protein are identified. These phosphorylation sites are characterized, using a phosphomimetic and phospho-deficient site-directed mutagenesis based approach, based on their ability to modulate PXR activity. Taken together, the work presented in this dissertation contributes to understanding the interface between ligands, signal transduction pathways and PXR activity, which is critical for the development of safe and effective therapeutic strategies.
    URI
    http://hdl.handle.net/1808/6188
    Collections
    • Dissertations [4474]
    • Pharmacy Dissertations and Theses [118]

    Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.


    We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.


    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    Browse

    All of KU ScholarWorksCommunities & CollectionsThis Collection

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    The University of Kansas
      Contact KU ScholarWorks
    Lawrence, KS | Maps
     
    • Academics
    • Admission
    • Alumni
    • Athletics
    • Campuses
    • Giving
    • Jobs

    The University of Kansas prohibits discrimination on the basis of race, color, ethnicity, religion, sex, national origin, age, ancestry, disability, status as a veteran, sexual orientation, marital status, parental status, gender identity, gender expression and genetic information in the University’s programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Director of the Office of Institutional Opportunity and Access, IOA@ku.edu, 1246 W. Campus Road, Room 153A, Lawrence, KS, 66045, (785)864-6414, 711 TTY.

     Contact KU
    Lawrence, KS | Maps