Show simple item record

dc.contributor.authorHu, Mengjia
dc.contributor.authorBrown, Virginia
dc.contributor.authorJackson, Joshua M.
dc.contributor.authorWijerathne, Harshani
dc.contributor.authorPathak, Harsh
dc.contributor.authorKoestler, Devin C.
dc.contributor.authorNissen, Emily
dc.contributor.authorHupert, Mateusz L.
dc.contributor.authorMuller, Rolf
dc.contributor.authorGodwin, Andrew K.
dc.contributor.authorWitek, Malgorzata A.
dc.contributor.authorSoper, Steven A.
dc.date.accessioned2023-07-11T16:05:24Z
dc.date.available2023-07-11T16:05:24Z
dc.date.issued2023
dc.identifier.citationHu, M., Brown, V., Jackson, J. M., Wijerathne, H., Pathak, H., Koestler, D. C., Nissen, E., Hupert, M. L., Muller, R., Godwin, A. K., Witek, M. A., & Soper, S. A. (2023). Assessing Breast Cancer Molecular Subtypes Using Extracellular Vesicles' mRNA. Analytical chemistry, 95(19), 7665–7675. https://doi.org/10.1021/acs.analchem.3c00624en_US
dc.identifier.urihttps://hdl.handle.net/1808/34588
dc.descriptionThis document is the Accepted Manuscript version of a Published Work that appeared in final form in Analytical Chemistry, copyright © 2023 American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acs.analchem.3c00624.en_US
dc.description.abstractExtracellular vesicles (EVs) carry RNA cargo that is believed to be associated with the cell-of-origin and thus have the potential to serve as a minimally invasive liquid biopsy marker for supplying molecular information to guide treatment decisions (i.e., precision medicine). We report the affinity isolation of EV subpopulations with monoclonal antibodies attached to the surface of a microfluidic chip that is made from a plastic to allow for high-scale production. The EV microfluidic affinity purification (EV-MAP) chip was used for the isolation of EVs sourced from two-orthogonal cell types and was demonstrated for its utility in a proof-of-concept application to provide molecular subtyping information for breast cancer patients. The orthogonal selection process better recapitulated the epithelial tumor microenvironment by isolating two subpopulations of EVs: EVEpCAM (epithelial cell adhesion molecule, epithelial origin) and EVFAPα (fibroblast activation protein α, mesenchymal origin). The EV-MAP provided recovery >80% with a specificity of 99 ± 1% based on exosomal mRNA (exo-mRNA) and real time–droplet digital polymerase chain reaction results. When selected from the plasma of healthy donors and breast cancer patients, EVs did not differ in size or total RNA mass for both markers. On average, 0.5 mL of plasma from breast cancer patients yielded ∼2.25 ng of total RNA for both EVEpCAM and EVFAPα, while in the case of cancer-free individuals, it yielded 0.8 and 1.25 ng of total RNA from EVEpCAM and EVFAPα, respectively. To assess the potential of these two EV subpopulations to provide molecular information for prognostication, we performed the PAM50 test (Prosigna) on exo-mRNA harvested from each EV subpopulation. Results suggested that EVEpCAM and EVFAPα exo-mRNA profiling using subsets of the PAM50 genes and a novel algorithm (i.e., exo-PAM50) generated 100% concordance with the tumor tissue.en_US
dc.publisherAmerican Chemical Societyen_US
dc.rightsCopyright © 2023 American Chemical Societyen_US
dc.subjectAssaysen_US
dc.subjectBiopolymersen_US
dc.subjectGeneticsen_US
dc.subjectImmunologyen_US
dc.subjectPeptides and proteinsen_US
dc.titleAssessing Breast Cancer Molecular Subtypes Using Extracellular Vesicles’ mRNAen_US
dc.typeArticleen_US
kusw.kuauthorHu, Mengjia
kusw.kuauthorBrown, Virginia
kusw.kuauthorJackson, Joshua M.
kusw.kuauthorWijerathne, Harshani
kusw.kuauthorGodwin, Andrew K.
kusw.kuauthorWitek, Malgorzata A.
kusw.kuauthorSoper, Steven A.
kusw.kudepartmentChemistryen_US
dc.identifier.doi10.1021/acs.analchem.3c00624en_US
kusw.oaversionScholarly/refereed, author accepted manuscripten_US
kusw.oapolicyThis item meets KU Open Access policy criteria.en_US
dc.identifier.pmidPMC10243595en_US
dc.rights.accessrightsembargoedAccessen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record