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Abstract

Extracellular vesicles (EVs) carry RNA cargo that is believed to be associated with the cell-of-

origin and thus have the potential to serve as a minimally invasive liquid biopsy marker for 

supplying molecular information to guide treatment decisions (i.e., precision medicine). We 

report the affinity isolation of EV subpopulations with monoclonal antibodies attached to the 

surface of a microfluidic chip that is made from a plastic to allow for high-scale production. 

The EV microfluidic affinity purification (EV-MAP) chip was used for the isolation of EVs 

sourced from two-orthogonal cell types and was demonstrated for its utility in a proof-of-concept 

application to provide molecular subtyping information for breast cancer patients. The orthogonal 

selection process better recapitulated the epithelial tumor microenvironment by isolating two 

subpopulations of EVs: EVEpCAM (epithelial cell adhesion molecule, epithelial origin) and 

EVFAPα (fibroblast activation protein α, mesenchymal origin). The EV-MAP provided recovery 

>80% with a specificity of 99 ± 1% based on exosomal mRNA (exo-mRNA) and real time–droplet 

digital polymerase chain reaction results. When selected from the plasma of healthy donors and 

breast cancer patients, EVs did not differ in size or total RNA mass for both markers. On average, 

0.5 mL of plasma from breast cancer patients yielded ~2.25 ng of total RNA for both EVEpCAM 

and EVFAPα, while in the case of cancer-free individuals, it yielded 0.8 and 1.25 ng of total RNA 

from EVEpCAM and EVFAPα, respectively. To assess the potential of these two EV subpopulations 
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to provide molecular information for prognostication, we performed the PAM50 test (Prosigna) on 

exo-mRNA harvested from each EV subpopulation. Results suggested that EVEpCAM and EVEAPα 

exo-mRNA profiling using subsets of the PAM50 genes and a novel algorithm (i.e., exo-PAM50) 

generated 100% concordance with the tumor tissue.

Graphical Abstract

INTRODUCTION

One type of liquid biopsy marker for cancer disease management is extracellular vesicles 

(EVs), which can be found in relatively high abundance even for early-stage disease. EVs 

(i.e., exosomes, microvesicles, and apoptotic bodies) originate from cells via multivesicular 

endosome fusion with the cell membrane or membrane budding for exosomes and 

microvesicles, respectively. Both contain cargos that includes proteins, lipids, and nucleic 

acids.1-4

EV-associated ribonucleic acid (RNA) can reflect changes in the RNA expression of the 

cells from which they were generated.5-7 However, the analysis of EV mRNA (exo-mRNA) 

is challenging due to the low abundance of these molecules in the pool of total RNA 

harvested from EVs including microRNA (miRNA), mRNA, ribosomal RNA (rRNA), and 

long noncoding RNA (lncRNA);8 EVs can carry up to ~10,000 nt of nucleic acids.9 While 

the packaging of RNAs10-12 into EVs protects these molecules from RNase degradation, 

studies have found little or no full-length 18S or 28s rRNA in EVs.13,14 Wei et al. reported 

that while exo-miRNA can make up ~42% of the total RNA content in EVs,13 exo-mRNA 

comprises <2% of the total RNA content. Full-length mRNA transcripts were found in 

shedding microvesicles but not in exosomes with the EV RNA size ranging between 

200 and 500 nt.15 Few studies have reported exo-mRNA analysis most likely due to its 

low abundance in EVs.16-21 In spite of the aforementioned limitation associated with exo-

mRNA, there is an increased interest in the use of exo-mRNA analysis for cancer disease 

management. Different EV isolation methods have been used in combination with real-time 

quantitative reverse transcription polymerase chain reaction (RT-qPCR) or droplet digital 

PCR (ddPCR) to gather gene expression information of different cancers.22-28
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Whatever type of molecular analysis is performed on EVs, disease-associated EVs must be 

enriched from complex biological samples, such as plasma, before analysis. Most methods 

for EV enrichment target all EVs irrespective of the cellular source. Therefore, low abundant 

mRNA transcripts whose expression alterations can serve as a disease indicator are “diluted” 

among the total RNAs carried by non-diseased EVs. This highlights the need for methods 

to specifically enrich disease-associated EVs in sufficient quantity and purity to evaluate 

the use of exo-mRNA as a disease biomarker.29,30 The “gold standard” for EV isolation 

has been differential ultracentrifugation, a laborious method with poor analytical figures-

of-merit.31 Newer methods for EV isolation include polymer precipitation, ion exchange 

columns, ultrafiltration, and size-exclusion chromatography. The aforementioned enrichment 

techniques isolate all EVs irrespective of the cellular source.31

There have been reports on the use of microfluidics for the enrichment of EVs (see Table 

S1).32,33 Microfluidics for EV isolation can be parsed into two categories: (i) selection via 

physical properties such as EV size or density and (ii) selection by biological properties, 

such as presentation of an antigenic marker for affinity enrichment. Microfluidics exploiting 

physical EV properties selects all EVs irrespective of the cell-of-origin. In cases requiring 

profiling exo-mRNA, the background produced by non-diseased exo-mRNAs can mask 

expression differences of tumor-derived exo-mRNA.16

Microfluidics with surface-attached mAbs that target pan-EV markers, such as the 

tetraspanins (CD63, CD81, or CD9), enriches exosomes irrespective of their cell-of-

origin.34-38 This approach can also mask disease signatures making disease-specific 

molecular profiling difficult. Targeting surface proteins that are disease-specific could 

obviate this problem. For example, several reports have used the epithelial cell adhesion 

molecule (EpCAM) as a target for enriching tumor-derived EVs.23,38-41 Other disease-

specific markers have also been used to isolate subpopulations of EVs that are more related 

to the disease.27,28

Different types of mRNA analysis techniques have been reported in the context of EVs, 

but only a few studies have utilized the NanoString nCounter assay for liquid biopsy 

markers.19,38,42-44 Our study reported herein utilized a novel approach for exo-mRNA 

analysis, which included a microfluidic EV affinity purification (EV-MAP) chip that 

enriched two orthogonal tumor-derived EV subpopulations: (i) EVs sourced from epithelial 

cells and (ii) EVs collected from cells with a mesenchymal phenotype. The exo-mRNA 

from both subpopulations were subjected to the nCounter PAM50/Prosigna assay without 

requiring amplification to identify breast cancer (BC) molecular subtypes: luminal A, 

luminal B, basal-like, and HER2-enriched. We have reported a dualaffinity selection strategy 

using anti-EpCAM and anti-FAPα (fibroblast activation protien α) mAbs, but it was used to 

isolate circulating tumor cells.45

EVs expressing EpCAM (EVEpCAM) and FAPα (EVFAPα)45 were isolated using an EV-

MAP microfluidic device. The purified EVs were then used for exo-mRNA transcript 

analysis via RT-ddPCR and PAM50 gene profiling (50 test genes and 8 reference genes) 

via the Nanostring nCounter to determine exo-mRNA abundance associated with a particular 

molecular subtype of BC for prognostication and risk-of-recurrence assessment. As such, the 
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PAM50 assay is not used to diagnose BC in patients, but instead molecular sub-type patients 

already diagnosed with BC to allow for assignment of proper treatment (i.e, prognostic 

test). Formalin-fixed paraffin-embedded (FFPE) tumor tissue was profiled as well to serve 

as the “gold standard” for determining the accuracy of using exo-mRNA for discerning the 

molecular subtype.

MATERIALS AND METHODS

Reagents and Materials.

Please see the Supporting Information for details on all reagents used in this study.

Cell Culture and EV Harvesting.

Please see the Supporting Information for details on cell lines and culturing conditions.

EV-MAP Device Fabrication.

EV-MAP devices, which were similar in design to our previous reports,46 used in this 

study were provided by BioFluidica and fabricated in the cyclic olefin polymer (COP, 

ZEONOR 1020/1060) via injection molding (Stratec, Austria) from a mold insert made via 

UV-LiGA.47 The device’s surfaces were activated with UV/O3 for generation of surface 

COOH functionalities for the covalent attachment of affinity agents.48

Antibody Immobilization.

Monoclonal antibody (mAb) immobilization to the surface of the EV-MAP chip 

followed procedures from our previous publications (see the Supporting Information for 

details).45,46,49

Sample Preparation and Automated Sample Processing Using EV-MAP.

Please see the Supporting Information for more details.

EV Lysis for Total RNA Extraction.

Please see the Supporting Information for experimental details.

Reverse Transcription.

Please see the Supporting Information for further details.

Droplet Digital PCR.

Please see the Supporting Information for details on the equipment and procedures for 

ddPCR.

PAM50 Gene Signature Assay.

Please see the Supporting Information for experimental details.

Hu et al. Page 5

Anal Chem. Author manuscript; available in PMC 2023 June 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



EV Release.

For the affinity-selected EVs’ evaluation using nanoparticle tracking analysis (NTA) and 

transmission electron microscope (TEM), particles were released from the isolation chip by 

infusing 0.2% proteinase K in PBS buffer (pH 7.4) and incubated at 37 °C for 30 min. 

Released EVs were eluted with PBS (10 μL/min, 7 min).

Nanoparticle Tracking Analysis and TEM for EV Characterization.

Please see the Supporting Information.

Monte Carlo Fluid Dynamics Simulation of EV-MAP.

Experimental details, simulation parameters, and modeling are provided in the Supporting 

Information.

RESULTS AND DISCUSSION

EV-MAP Microfluidic Design, Optimization, and Fabrication.

The EV-MAP was fabricated in the cyclic olefin polymer, COP, via injection molding 

(Figure 1a,b). The microfluidic network was composed of 7 parallel selection beds (30 mm 

long and 4 mm wide) filled with diamond-shaped micropillars (10 × 10 μm) with the beds 

addressed using a single inlet and outlet channel (200 × 200 μm) arranged in the so-called 

z-configuration. The table in Figure 1c summarizes the dimensional features of this chip.

The challenge with some microfluidics is their production, which cannot support generation 

of a large number of devices with tight compliancy to support in vitro diagnostics. For 

example, a vast number of EV isolation platforms are fabricated in polydimethylsiloxane 

(PDMS), which is not conducive to high-scale manufacturing required for large-scale 

studies. Wijerathne et al.46 and Reátegui et al.16 reported microfluidics for EV isolation 

that used a thermoplastic chip fabricated via injection molding; the chip used herein was 

produced via injection molding.

As the sample is hydrodynamically shuttled through the EV-MAP chip, EVs move laterally 

around the pillars and encounter surface-bound mAbs under laminar flow conditions. 

A small inter-pillar spacing decreases diffusional distances to increase the number of 

interactions between surface-immobilized mAbs and the EVs, which improves recovery. 

To gauge the efficiency of the EV-MAP for recovering solution-borne EVs using a surface-

bound mAb, a Monte Carlo simulation was used considering EV diffusion and EV-mAb 

binding kinetics. While COMSOL can simulate these physics, accurate estimation of EV 

recovery required modeling diffusion through the entire EV-MAP bed, which became 

numerically intractable, given the large geometry of each bed. The Monte Carlo simulation 

tracked the diffusive and convective motions of individual EVs through an EV-MAP bed 

(see the Supporting Information)50 and simulated the probability of mAb–EV binding 

based on the Chang–Hammer model.51 Binding kinetics between the solution-borne EV 

and surface-bound mAbs were important to evaluate as not every interaction with a surface 

results in successful association of an EV to the surface-mAb due to orientational effects.
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Simulation results can be found in the Supporting Information (Figure S1 and simulation 

parameters provided in Table S2). When an EV encountered a surface-attached mAb, 

EV–mAb binding kinetics were invoked to result in either a successful binding event 

or continued motion of the EV through a pillared bed (Figure S1). The results were 

averaged over thousands of EV events until the simulation converged to provide an average 

EV-MAP recovery (Figure 1d). Due to the low Peclet number near the channel surface 

created by the no-slip condition, the motion of an EV was primarily diffusion-controlled 

near the pillar’s surface. As expected, we found that decreasing the inter-pillar spacing 

or increasing the bed length increased recovery. For the EV-MAP device, a volume flow 

of 13 μL/min provided recoveries of ~80%, but even at a volume flow of 20 μL/min, 

the recovery was still ~60% (Figure 1d). We also generated shear stress profiles from 

COMSOL Multiphysics simulations using parameters listed in Table S2. The shear stress 

and laminar flow simulation results are shown in Figure 1e. Results showed a shear stress 

of 3.1 dynes/cm2 at the pillar wall for a linear velocity of 3.7 mm/s. Due to the small size 

of EVs and high strength of the mAb–antigen association as well as the covalent attachment 

of the mAb to the microfluidic surface, fluid shear forces could not remove EVs from the 

surface.49 A single mAb–antigen bond (1.2 × 10−5 dynes)52 indicated that a 100 nm EV 

would require 150,000 dynes/cm2 for physical removal from the surface.

We estimated a particle load of ~2.2 × 1011 (Figure 1c), which was determined by the 

surface density of mAbs, its orientation on the surface following EDC/NHS coupling 

chemistry, and the total surface area of the device (38 cm2). The surface density of −COOH 

groups following UV/O3 activation of thermoplastics is 3.7 × 10−4 molecules nm−2,53 which 

would generate an mAb load per device of 1.4 × 1012. However, because of the stochastic 

nature of the attachment of mAbs to the surface, which depends on the availability of a 

primary amine group resident on the mAb, nearly 90% of the mAbs may be shielded by the 

surface following immobilization, resulting in 1.4 × 1011 available sites.46 The high surface 

load, which was enabled by the placement of 7 beds with each bed populated with a high 

density of pillars, provided a high mass load and large dynamic range, which is necessary to 

generate quantitative data with respect to the expression of exo-mRNA targets.

Wei et al. reported that a single EV can carry ~4.45 ng of total RNA, which would indicate 

~445 ng of total RNA from ~1011 particles at chip saturation. As can be seen from Table S5, 

we never exceeded the calculated saturation point as indicated by a total RNA yield of 445 

pg per chip isolate. The total RNA mass for all samples analyzed ranged between 0.4 and 50 

ng.

Automated Fluidic Operation of the EV-MAP Chip.

EV-MAP chips were operated using the LiquidScan (Bio-Fluidica, Inc.; Figure 1f) liquid 

handling robot. The Liquid-Scan operation of the EV-MAP chip increased our sample 

processing throughput (the robot has 16 pipetting channels and can process 8 chips 

simultaneously) and reduced intersample variability compared to manual chip operation 

using a syringe pump. The interface between the robot and the EV-MAP chip adopted a 

format shown in Figure 1g,h; the EV-MAP’s input/output ports interfaced directly to the 

robot using a pipet tip.
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The work deck of the liquid handling robot was modified to accommodate the 

fluidic operation of the chips by using a push/pull operational mode. The robot could 

simultaneously operate 8 chips and required approximately 80 min per assay (500 μL input 

plasma volume and 1 mL wash), meaning that 144 EV isolation assays could be run per 

machine per day and do so in a fully automated fashion. Manual operation of the EV-MAP 

chip, which required attended operation, using a multi-channel syringe pump allowed only 

~32 assays per day.

Chip Preparation, Protocol Optimization, and EV Characterization.

EV purification utilized anti-EpCAM and anti-FAPα mAbs with each EV-MAP chip 

containing a single mAb type (Figure 2a). mAbs were covalently attached to the EV-MAP 

chip surface following UV/O3 activation of the chip, which created surface carboxylic 

acids.53 The mAbs were attached to the surface −COOH groups using standard EDC/NHS 

coupling chemistry (Figure 2b). COP has demonstrated the ability to efficiently produce 

carboxylic acid surfaces following UV/O3 activation.46,53 This property makes this material 

attractive for the EV-MAP chip because high −COOH surface densities result in high mAb 

loads that increase the recovery and load of selected targets.48 Throughout this study, we 

confirmed successful EDC/NHS coupling of the mAbs to the chip surface using 5′-NH2, 

3′-Cy3 oligonucleotide fluorescent reporters (Figure S2).

To minimize non-specific adsorption, various blocking and washing buffers were evaluated. 

The level of non-specific adsorption was measured by processing 500 μL of four different 

plasma samples using anti-EpCAM, anti-FAPα, anti-CD81, and anti-IgG2A (negative 

control) mAb-modified devices. EVs were released from the device’s surfaces, and 

nanoparticle concentrations were measured using NTA (size distribution results are shown 

in Figure S3). We measured the specificity, which was calculated by subtracting the EV 

counts released from the isotype device (i.e., non-specifically adsorbed particles) from the 

anti-EpCAM device particle number and dividing by the total number of EVs found in the 

eluent of the device. Specificity was also assessed using ddPCR performed on exosomal 

total RNA.

Different blocking and washing buffers were evaluated: (i) 1% BSA; (ii) 1% BSA/1% 

PVP-40/Tween 20 in TBST; and (iii) 1% BSA/1% PVP-40. Devices were pre-washed with 1 

mL of blocking buffer at 50 μL/min. After EV isolation, devices were washed with 1 mL of 

the appropriate buffer at 25 μL/min. Following sample processing, EVs were either released 

intact or exosomal total RNA was harvested from the on-chip lysis of EVs.

Blocking and washing EV-MAP surfaces with 1% BSA in PBS resulted in the lowest 

specificity from NTA (16%) using the anti-EpCAM device. Specificity was calculated by 

subtracting the nonspecific IgG2B EV nanoparticle concentrations from the anti-EpCAM EV 

concentrations and dividing by the total number of nanoparticles collected as measured by 

NTA (see Figures 2c and S3). Further NTA data indicated that the addition of 1% PVP-40 

to the BSA blocking buffer while washing devices with 0.2% Tween-20 achieved the highest 

specificity, which was found to be 42% (Figure 2c). We also assessed EV-MAP specificity 

through exo-mRNA quantification, and this resulted in a specificity of 99 ± 1% using a 

blocking buffer of 1% BSA/1% PVP-40 and was washed with 0.2% Tween-20 (Figure 2c).
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We also assessed EV-MAP purification of cell-specific EV subpopulations and their exo-

mRNA expression. 500 μL of healthy donor plasma was infused into two sets of devices 

functionalized with anti-EpCAM, anti-FAPα, anti-CD81, or anti-IgG2B mAbs. Devices were 

blocked with 1% BSA/1% PVP-40 and washed with 0.2% Tween 20. After washing, one set 

of devices was treated with proteinase K for release of EVs to allow for TEM (Figure 2d), 

while another set was subjected to on-chip lysis and RNA solid-phase extraction (Figure 2e) 

followed by RT-ddPCR (Figure 2f).

TEM images of the EV-MAP eluent showed the presence of EVs through observation of 

a cup-shaped morphology, which is characteristic of EVs. Although nanoparticles were 

present in the isotype negative control fraction, most of those particles were very small with 

diameters <20 nm, but not resembling aggregated proteins (Figure 2d). The presence of EVs 

in the mAb isolated fractions, including very small particles in the IgG2B isotype negative 

control, was verified by extraction of total RNA and subjecting each extract to TapeStation 

analysis (Figure 2e). Total RNA was extracted from affinity-isolated EVEpCAM, EVFAPα, 

and EVCD81, and total RNA was also recovered from the IgG2B isotype negative control. 

However, very little expression of the genes tested was found in the fraction isolated on 

the isotype chip, but discernible amounts of exo-mRNA from the anti-EpCAM, anti-FAPα, 

and anti-CD81 chips were observed. Transcript expression between certain genes including 

epithelial (EpCAM and CK19), mesenchymal (FAPα and VIM), cytokine (IL8), tetraspanin 

(CD81), and stem-cell related (CD24 and CD44) genes was evaluated using ddPCR (Figure 

2f). Total RNA traces indicated that the RNA sizes ranged from 50 to 500 nt, which 

represents typical exosomal total RNA sizes.15

The isolation of EVEpCAM and EVFAPα from healthy donor plasma resulted in the 

appearance of epithelial- and mesenchymal-associated gene transcripts. We found high 

expression of CK19 and low expression of the mesenchymal-associated FAPv2 and VIM 
in the anti-EpCAM isolate but low expression of CK19 and high expression of FAPv2 
and VIM for the anti-FAPα isolate (Figure 2f). CD44(high)/CD24(low) occurred in the 

anti-FAPα fraction, correlating well with the mesenchymal phenotype.

Figure 2g shows fluorescence images of an EV-MAP with no mAb attached to the surface 

and a positive control (anti-EpCAM mAb covalently attached to the chip surface) collected 

from SKBR3 cell line medium processed using the EV-MAP chip and stained with anti-

EpCAM–Cy5 mAbs. Following affinity isolation and staining, the material within the 

device was lysed and the fluorescence signal was collected for both negative and positive 

(anti-EpCAM-modified chip) controls. There was a difference in the fluorescence intensity 

between these two controls, indicating successful affinity selection of EVEpCAM particles.

Orthogonality of Selection Markers.

Orthogonality of selection markers would result in gene expression profiles and the 

proteins they express not being co-expressed to any substantial degree in different cell 

types. Non-orthogonal selection markers would indicate that the dual selection process 

would not offer unique or complementary molecular information. To investigate whether 

EVEpCAM and EVFAPα were orthogonal, conditioned cell culture media collected from 

two BC cell lines with epithelial and mesenchymal phenotypes were processed using the 
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EV-MAP. The SKBR3 cell line represents an epithelial phenotype—EpCAM(+)/FAPα(−), 

and Hs578T has a mesenchymal-like phenotype [EpCAM(−)/FAPα(+)], as shown in Figure 

3a.45 Immunophenotyping of the SKBR3 and Hs578T (Figure 3a) cells showed the typical 

pattern indicative of epithelial and mesenchymal cells, respectively. For example, SKBR3 

cells showed high expression of EpCAM but no noticeable expression of FAPα, while 

no EpCAM expression was seen in the Hs578T cells, but high expression of FAPα was 

observed.

For EV purification, cell culture media was EV-depleted (further information provided 

in Figures S4 and S5) to eliminate background bovine EVs. EV depletion created little 

differences in the gene expression profiles when compared to cells grown in regular FBS 

(Figure S6). 500 μL of conditioned culture media was processed through either an anti-

EpCAM, anti-FAPα, or anti-IgG2A isotype control EV-MAP chip. The isotype was used to 

assess the level of non-specific binding.34,36,54 To release EVs for NTA and TEM analysis, 

we employed 0.2% proteinase K in PBS for 30 min at 37 °C. Intact EVs were observed 

following release (Figure S7a-c), and the release efficiency was found to be 99 ± 1% (Figure 

S6c).

TEMs of the EVEpCAM and EVFAPα from SKBR3 and Hs578T culture media, respectively, 

showed no differences in the size of the EVs and were comparable in size and morphology 

to the EVs isolated via ultracentrifugation (Figure 3b,c). NTA results showed that the size 

of EV-MAP-purified EVs ranged from 30 to 300 nm with an average size of ~125 nm. NTA 

results for SKBR3 EVs showed more than twice the number of nanoparticles selected by 

the anti-EpCAM device (Figure 3b) compared to the FAPα device from the same volume of 

medium.

Through TEM analysis, some EVs were observed to have the “cup-shape” morphology 

typically seen in EVs, but the majority were spherical in shape (Figure 3b). No particles 

were present in the TEM images from the isotype fractions. This suggested that particles 

detected for the isotype control were from the background associated with the NTA 

method and confirms the previously reported lack of specificity for particle enumeration 

via NTA.55-57

Conditioned media was processed via the EV-MAP with anti-EpCAM and anti-FAPα mAb 

chips with subsequent total RNA extraction followed by RT–ddPCR. Cells were also taken 

from conditioned cell media and subjected to lysis, RNA extraction, and RT–ddPCR. 

Primers for ddPCR were designed to span the sequence of mRNA close to the 3′ poly 

adenylated region with the interrogated regions ranging from 240 to 470 nt. The gene 

expression profiles were then compared between the selected EVs and their cells-of-origin to 

determine whether EVs could provide similar information to that from their cells-of-origin. 

The gene panel we analyzed (Figure 3d) contained epithelial (EpCAM, CRT, and CD24) 

and mesenchymal (FAPα, CD44, SMA, and VIM) genes as well as a cytokine gene (IL8). 

The gene expression patterns agreed fairly well with the expression pattern of the cells with 

no expression of FAPα seen in the SKBR3 cells but high expression in the Hs578T cells. 

Also, no mesenchymal mRNA transcripts were detectable in the SKBR3 cells, but they 

were present in the Hs578T cells. The SKBR3 and Hs578T cell lines are distinguishable 
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not only based on their expression of epithelial and mesenchymal markers but also by their 

CD44/CD24 expression ratio as Hs578T cells were CD44(high)/CD24(low), while SKBR3 

cells were CD44(low)/CD24(high).58

The same epithelial/mesenchymal panel was used to evaluate mRNA abundance in EVs 

isolated from healthy donors and 3 BC patients’ plasma. Blood samples from healthy donors 

were secured from women arriving for routine mammograms and known to have no current 

diagnosis of cancer (further healthy donor and patient information can be found in Table S3 

and S4).

To compare healthy donors and BC patients’ gene expression profiles resulting from the EVs 

purified via the EV-MAP chip, 500 μL of plasma was processed using anti-EpCAM and 

then anti-FAPα chips with the optimized blocking and washing buffers. After processing, 

EVs were lysed on-chip for RNA purification and then subjected to RT–ddPCR Results 

from RT–ddPCR are presented in Figure 3e. The abundance of mRNA transcripts in both 

EVEpCAM and EVFAPα for the genes evaluated showed higher levels of the transcripts in BC 

patients compared to healthy donors. Following principal component analysis (PCA) of the 

mRNA transcripts, a gene cluster for healthy donors was observed, while the data for BC 

EVs were outside of this cluster. Only one BC sample fell within the healthy donor cluster 

(Figure 3f). Copy numbers for cDNA (i.e., mRNA) were low but above the levels of the 

negative controls and above the limit of detection of ddPCR (empirically determined in our 

hands to be 4 copies).59

Proof-of-Concept Study for Molecular Subtyping BC Patients’ Using mRNA Sourced from 
EVEpCAM and EVFAPα.

EV mRNA analysis of cancer patients is not trivial because of the low mass of exo-

mRNA.13 Owing to the efficient recoveries and high specificity of the EV-MAP device, 

we secured sufficient total RNA to directly analyze exo-mRNAs using the PAM50 genes. 

The Prosigna assay uses the PAM50 mRNA gene panel and an established algorithm30 to 

classify BC patients using the NanoString nCounter Dx instrument. Because the Prosigna 

assay is not used for diagnostic purposes, the EVs and exo-mRNA from healthy donors’ 

plasma were not included in the analysis in this work. The four intrinsic subtypes of BC, i.e., 

luminal A, luminal B, HER2-enriched, and basal-like, are defined by differential expression 

of 50 test genes and 8 reference genes.

For these studies, we evaluated the PAM50 gene panel expression using the nCounter with 

BC patients’ samples. The assay is designed to use FFPE tumor tissue. Evaluation of the 

concentration of the total RNA isolated from EVEpCAM, EVFAPα, and EVCD81 is shown 

in Figure 4a. Total RNA concentration was the highest in the EVCD81 population and 

proportional to the highest number of particles isolated on the CD81 EV-MAP chip. Total 

RNA isolated from EVEpCAM or EVFAPα was not significantly different in all subtypes 

of BC. Total RNA concentration from healthy donors and all subtypes of BC was not 

statistically different as well. From 0.5 mL of healthy donor plasma, EVEpCAM and EVFAPα 

provided 0.8 ± 0.5 ng (range 0.05–1.6 ng) and 1.25 ± 1.0 ng (range 0.05–2.75 ng) of total 

RNA, respectively. The total RNA mass from EVEpCAM and EVFAPα from 0.5 mL of BC 

patient’s plasma was 2.25 ± 2 ng (range 0.05–11.1 ng) and 2.25 ± 4 ng (range 0.05–24.4 ng), 
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respectively. The total RNA mass extracted from EVCD81 averaged 8.0 ± 9 ng (range 0.8–

25.5 ng) and was statistically different from total RNA found in EVFAPα but not EVEpCAM. 

Total RNA electrophoretic profiles varied between samples for all three subpopulations of 

EVs. Representative electropherograms are shown in Figure S8 for EVEpCAM, EVFAPα, and 

EVCD81. The fragment sizes of total RNA ranged between 30 and 1000 nt, and in some 

samples, evidence of fragmented rRNA was seen (note the short length of 18S and 28S 

rRNA, which typically possess a size of 2 and 5 kb, respectively).

Further analysis of total RNA for different subtypes of BC (identified based on tumor tissue 

analysis) is shown in Figure 4b, which showed that total RNA concentration was the highest 

in the basal molecular subtype for both EVEpCAM and EVFAPα. In luminal A, total RNA was 

highest in the EVEpCAM subpopulation. HER-2 and luminal B subtypes showed the lowest 

concentration of total RNA for both EVEpCAM and EVFAPα. Total RNAs from EVEpCAM 

and EVFAPa introduced into the PAM50 assay are listed in Table S5. Inspection of the 

heatmap shown in Figure 4c clearly indicates that the amount of mRNA needed for the 

PMA50 genes was much higher than what we could garner from the EVs irrespective of the 

subpopulation.

PCA of all exo-mRNA transcripts (Figure 4d) for the PAM50 panel showed different 

clusters for EVs and tumor tissue; however, poor classification efficiency between BC 

subtypes was observed. Analysis of transcript abundance showed high correlation in mRNA 

transcript abundance between EVCD81 and EVFAPα or EVEpCAM (75–102%, as deduced 

from the slopes of the curves) but very low correlation of all three with tumor tissue 

mRNA (0.5–14.4%; Table S6). Even mRNA profiles for EVs isolated via PEG precipitation 

and tumor tissue showed low concordance (8–32%), meaning that only ~32% of the same 

transcripts were present in both fractions.

We could identify different clusters that were clearly present in the tumor tissue and different 

ones in the exo-mRNA. The black box in Figure S9a marks the FFPE clusters, while blue 

and green boxes represent the more abundant and less abundant transcripts in FFPE vs EVs, 

respectively. For example, the genes GRB7, ERBB2, MYC, KRT14, MMP11, GPR160, 
CXXC5, SLC39A6, and MDM2 were highly abundant in FFPE tissue but not detected in 

the EVs. Furthermore, transcripts for genes such as CDC6, CENPF, CEP55, EXO1, MELK, 
UBE2C, ACTR3B, SFRP1, MLPH, FOXA1, BLVRA, and BAG1 showed higher abundance 

in EVs compared to FFPE (see Table S7).

Overall, 36 of the 50 genes used in the PAM50 panel had no detectable expression in 

>40% of the samples. Therefore, for exo-mRNA, ~14 genes of the original PAM50 panel 

were used for the molecular subtyping. We also investigated whether the transcript length 

influenced the PAM50 subtyping results. Figure S9b shows the genes in the PAM50 panel 

and their corresponding length. We concluded that the gene length did not cause bias.

Based on these results, we generated an exo-mRNA expression profile for the samples 

evaluated in this study, including the FFPE tissue using the nCounter assay for unamplified 

mRNA. A heatmap is shown in Figure 4e (log2 profile) for a set 14 genes that withstood 

our filtering procedure and were used to hierarchically cluster all EV subpopulations and 
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FFPE samples. The nCounter assay uses 8 genes as housekeeping genes for normalization. 

As can be seen from Figure 4f, for these 8 housekeeping genes, we selected to use PUM1 

as the normalization gene because it provided minimal changes in its exo-mRNA expression 

across the EV subpopulations investigated (EVEpCAM, EVFAPα, EVTOT, and EVCD81). The 

heatmap in Figure 4e shows that the FFPE samples were fairly well clustered, consistent 

with the PCA analysis shown in Figure 4d, indicating differences in the abundance of 

mRNA transcripts packaged into EVs compared to their cell-of-origin (see Figure S9a). 

However, the molecular subtype clustering was not evident in the exo-mRNA heatmap 

consistent with our PCA analysis (see Figure 4d).

Computational Algorithm for Breast Cancer Molecular Subtyping Using exo-mRNA.

Our initial analysis of the relative levels of the PAM50 genes using an algorithm developed 

previously30 did not successfully classify BC molecular subtypes from exo-mRNA. Using 

four different EV subpopulations (i.e., total EVs, EVEpCAM, EVFAPα, and EVCD81), only 

1 of 8 samples was successfully called using exo-mRNA sourced from EVEpCAM and 

EVFAPα and 0 out of 8 using total EVs or EVCD81. Therefore, we decided to modify our 

approach, and instead of using all 50 genes, we sought to use subsets of the 50-gene panel 

and develop a new algorithm (exo-PAM50) to classify the molecular subtypes (see the 

Supporting Information for more information on development of this algorithm and Figure 

S10 for a flowchart of processing steps and Tables S8-S11 for the associated Supporting 

Information).

Across the various EV subpopulations, between 12 and 15 genes withstood filtering and 

were subjected to the exo-PAM50 algorithm that identified 4 unique gene sets, resulting in 

75% concordance between the molecular subtyping calls made from EVEpCAM and those 

obtained from FFPE tumor tissue. For EVFAPα, 5 subsets were identified, of which 3 

resulted in 75% concordance between the molecular subtyping calls made from EVFAPα 

and those obtained from FFPE tumor tissue. For EVCD81, only 1 gene subset was identified 

that led to 75% concordance, and for total EVs isolated by ExoRNeasy, 2 gene subsets 

led to 63% concordance with the molecular subtyping calls from FFPE tumor tissue. All 

subsets of genes were unique within and between EV sample types. Gene sets that correctly 

predicted the subtype based on exo-mRNA in EVEpCAM did not perform well for predicting 

the subtype in EVFAPα.

Figure 4g presents PAM50 gene profiling results for specific BC molecular subtypes. 

EVFAPα could not correctly identify the basal BC subtype, while EVEpCAM identified this 

molecular type correctly for all gene panels. However, the EVFAPα subpopulation identified 

luminal A, luminal B, and HER-2 subtypes with 100% accuracy using gene panels 5, 6, 7, 

and 9. Analysis of the EVEpCAM and EVFAPα data revealed that a successful calling protocol 

could be established: (i) consensus of the majority of gene panels for both EVEpCAM and 

EVFAPα dictates the molecular subtype and (ii) when the EVEpCAM subpopulation called 

the basal subtype, those data were used for the molecular subtype classification. Luminal A 

and luminal B calls were made solely by the EVFAPα data, and the HER-2 subtype could 

use both the EVEpCAM and EVFAPα subpopulation results. Using this strategy, 100% call 

accuracy was achieved using unamplified exo-mRNA sourced from EVEpCAM and EVFAPα. 
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However, when using EVCD81 or ultracentrifuge isolated EVs, the BC subtype identification 

accuracy was 75%, irrespective of the gene subset(s) used.

CONCLUSIONS

FDA-approved tests such as the Oncotype DX or the Prosigna BC prognostic gene 

signature assay analyze mRNA extracted from a solid BC tissue to indicate survival based 

on expression of selected genes,30 which requires an invasive procedure to secure the 

test sample and subsequent formalin fixation and paraffin embedment that can degrade 

the integrity of the RNA. The ability to translate our dual-selection EV-MAP procedure 

into current clinical applications using a liquid biopsy sample, which provides minimally 

invasive sampling, was demonstrated for the molecular subtyping of BCs. However, slight 

modifications in the tissue-based assay were required such as the genes used in the analysis; 

an exo-PAM50 test panel was developed that took advantage of the dual isolation approach 

adopted herein. The challenge with many molecular assays for a clinical indication is that 

they require large mass inputs; for example, the Prosigna test requires >12.5 ng/μL of total 

RNA, which in many cases a liquid biopsy sample cannot provide. Our dual-selection 

EV-MAP assay addressed this concern by implementing special design considerations 

including a number of parallel beds (7), high recovery, and high purity with the selection 

of both epithelial- and mesenchymal-like EVs. In addition, we developed a new algorithm 

(exo-PAM50), which did not include genes that were “silent” in exo-mRNA (i.e., genes were 

removed if samples contained >40% zero values for a particular transcript).

Given the success of these studies, which were a proof-of-concept clinical study, our future 

work will evaluate larger gene panels and expand on including low abundant or “silent” 

genes, which can be informative when predicting the BC subtype as well. We will also 

seek to perform a powered clinical study to further substantiate our findings associated with 

using exo-mRNA for molecular subtyping BC patients. In addition, we will evaluate EVs 

isolated from other epithelial cancers using EpCAM and FAPα targets45 and the use of 

different molecular assays from EVs enriched using our EV-MAP device, such as RNA-Seq. 

While early-stage disease would be expected to produce less EVs and consequently a lower 

mRNA mass, it will be necessary to consider alternative mRNA expression platforms that 

will provide lower limits of detection.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(a) Micrograph and CAD design of a 7-bed EV-MAP device. (b) SEM images of the 

injection molded chip. (c) Dimensions of the EV-MAP device. The theoretical load was 

calculated by assuming an average EV size of 150 nm. (d) Recovery results as a function of 

flow rate from Monte Carlo simulations for the 7-bed EV-MAP design using 10 μm pillar 

spacing. (e) COMSOL Multiphysics simulation results showing 3D velocity cross-sections 

and shear stress profiles between two adjacent micropillars. Note the symmetry constraints 

placed along two sides of the simulation to achieve high element quality (Table S2) at a 

tractable computational cost. (f) Robotic platform for automated sample processing. The 

robot was based on a customized commercial system from Hamilton (Starlet). The robot 

could process up to 8 chips simultaneously. (g) Schematic showing the EV-MAP chip 

with its cover plate to accommodate insertion and operation by the robot. The chip, which 

measured 38 × 42 mm, was fitted with a COP cover plate containing conical ports to 

allow for leak-free interfacing to the pipette tips. (h) Pumping of the sample and reagents 

through the microfluidic architecture is achieved by the use of two pipetting channels 

simultaneously, one in push and one in pull mode.
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Figure 2. 
(a) Affinity isolation of EVs performed in a serial fashion. (b) Schematic of a direct 

attachment of mAb to the surface of a UV/ozone activated polymer surface. (c) Optimization 

of blocking and washing buffers based on maximizing specificity achieved from healthy 

donor plasma samples. Specificity was calculated based on subtraction of the nonspecific 

IgG2B EV NP concentrations from the anti-EpCAM EV concentrations and dividing by the 

total number of nanoparticles collected as measured through NTA. Comparison of assay 

specificity is also included based on NTA results, RNA quantification, and mRNA copy 

quantification. (d) TEM images of EV fractions isolated from the donor plasma sample, 

with the same sample also used to extract total RNA for RT–ddPCR analysis. (e) Total 

RNA for each EV fraction analyzed using high-sensitivity RNA tape. The total RNA 

concentration generated per isolate ranged from 706 pg/μL (anti-EpCAM isolate) to 155 

pg/μL (anti-FAPα isolate). (f) 2 μL of the total RNA was used for RT–ddPCR. The total 

copy results were normalized to the ng of the total RNA input into RT. (g) Fluorescent 

images of a negative control (no mAb attached to the surface of a pristine chip) and positive 

control (anti-EpCAM antibody covalently attached to the chip surface) collected after 

SKBR3 cell line-conditioned medium was processed through the anti-EpCAM EV-MAP 

chip and stained with anti-EpCAM–Cy5 mAb. (h) Following affinity isolation and staining, 

the material within the device was lysed in both negative and positive controls, and samples’ 

fluorescence was measured using a fluorescence spectrometer.
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Figure 3. 
(a) Immunophenotyping of SKBR3 and Hs578T BC cell lines for several protein markers 

including Pan-CK, EpCAM, FAPα, and vimentin as well as nuclear staining with DAPI, 

(scale bar = 20 μm). (b) NTA data for EVEpCAM and EVFAPα isolated from SKBR3 and 

Hs578T conditioned cell media and examples of TEMs, and (c) SKBR3 EVs isolated via 

ultracentrifugation and a TEM image collected for these EVs. (d) RT-qPCR mRNA gene 

profiles of SKBR3 and Hs578T cells and their respective EVs. EVs were isolated from 

conditioned media by the EV-MAP device. (e) EVEpCAM and EVFAPα mRNA abundance 

for healthy donors and BC patients. (f) PCA of analyzed mRNA from EVEpCAM and 

EVFAPα isolated from healthy donor plasma and BC patients, and blue and red text indicates 

EVEpCAM and EVFAPα subpopulations, respectively. Data for BC patients are irrespective of 

the subtype or receptor status of the cancer.
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Figure 4. 
(a) Box plots presenting the concentration of total RNA extracted from isolated EVEpCAM 

and EVFAPα from healthy donors and BC patients’ plasma. (b) Concentration of total RNA 

extracted from isolated EVEpCAM and EVFAPα separated by the subtype of the primary 

tumor tissue at the time of diagnosis. (c) EV mRNA analysis using PAM50 test. Heatmaps 

for 50 panel gene and BC samples. Total EVs, affinity-isolated CD81(+) EVs, and FAPα(+) 

or EpCAM(+) EVs were selected from BC plasma samples and tested with PAM50. (d) PCA 

was performed on analyzed samples and clearly distinguished EVs from tissue BC mRNA. 

(e) Heatmap showing the expression pattern of exo-mRNA in different plasma samples 

analyzed in this study. Also shown are the expression patterns for the mRNA harvested from 

FFPE tissue. For the exo-mRNA, the EVs were affinity-selected from the plasma samples 

using the EV-MAP chip and the EVs were lysed followed by solid-phase extraction of 
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the total RNA. For the FFPE samples, the tissue was lysed and subjected to solid-phase 

extraction. In both cases, the solid-phase-extracted total RNA was subjected to the nCounter 

assay. (f) Heat map composed from log2 Prosigna mRNA counts and normalized to PUM1 
reference gene. (g) Identification of breast cancer molecular subtype based on PAM50 

profiling using mRNA isolated from EVEpCAM and EVFAPα for diffident BC subtypes.
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