Show simple item record

dc.contributor.authorBhattarai, Apurba
dc.contributor.authorMiao, Yinglong
dc.date.accessioned2021-10-05T20:34:13Z
dc.date.available2021-10-05T20:34:13Z
dc.date.issued2018-10-29
dc.identifier.citationBhattarai, A., & Miao, Y. (2018). Gaussian accelerated molecular dynamics for elucidation of drug pathways. Expert opinion on drug discovery, 13(11), 1055–1065. doi:10.1080/17460441.2018.1538207en_US
dc.identifier.urihttp://hdl.handle.net/1808/31915
dc.descriptionThis is an Accepted Manuscript of an article published by Taylor & Francis in Expert Opinion on Drug Discovery on 29 Oct 2018, available online: http://www.tandfonline.com/10.1080/17460441.2018.1538207.en_US
dc.description.abstractIntroduction: Understanding pathways and mechanisms of drug binding to receptors is important for rational drug design. Remarkable advances in supercomputing and methodological developments have opened a new era for application of computer simulations in predicting drug-receptor interactions at an atomistic level. Gaussian accelerated molecular dynamics (GaMD) is a computational enhanced sampling technique that works by adding a harmonic boost potential to reduce energy barriers. GaMD enables free energy calculations without the requirement of predefined collective variables. GaMD has proven useful in biomolecular simulations, in particular, the prediction of drug-receptor interactions.

Areas covered: Herein, the authors review recent GaMD simulation studies that elucidated pathways of drug binding to proteins including the G-protein-coupled receptors and HIV protease.

Expert opinion: GaMD is advantageous for enhanced simulations of, amongst many biological processes, drug binding to target receptors. Compared with conventional molecular dynamics, GaMD speeds up biomolecular simulations by orders of magnitude. GaMD enables routine drug binding simulations using personal computers with GPUs or common computing clusters. GaMD and, more broadly, enhanced sampling simulations are expected to dramatically increase our capabilities to determine the mechanisms of drug binding to a wide range of receptors in the near future. This will greatly facilitate computer-aided drug design.
en_US
dc.publisherTaylor & Francisen_US
dc.subjectGaussian accelerated molecular dynamicsen_US
dc.subjectEnhanced samplingen_US
dc.subjectDrug pathwaysen_US
dc.subjectGPCRsen_US
dc.subjectHIV proteaseen_US
dc.subjectComputer-aided drug designen_US
dc.titleGaussian accelerated molecular dynamics for elucidation of drug pathwaysen_US
dc.typeArticleen_US
kusw.kuauthorBhattarai, Apurba
kusw.kuauthorMiao, Yinglong
kusw.kudepartmentDepartment of Molecular Biosciencesen_US
dc.identifier.doi10.1080/17460441.2018.1538207en_US
kusw.oaversionScholarly/refereed, author accepted manuscripten_US
kusw.oapolicyThis item meets KU Open Access policy criteria.en_US
dc.identifier.pmidPMC6450802en_US
dc.rights.accessrightsopenAccessen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record