A Computational Modeling Approach Predicts Interaction of the Antifungal Protein AFP from Aspergillus giganteus with Fungal Membranes via Its γ-Core Motif

View/ Open
Issue Date
2018-10-03Author
Utesch, Tillmann
de Miguel Catalina, Alejandra
Schattenberg, Caspar
Paege, Norman
Schmieder, Peter
Krause, Eberhard
Miao, Yinglong
McCammon, J. Andrew
Meyer, Vera
Jung, Sascha
Mroginski, Maria Andrea
Publisher
American Society for Microbiology
Type
Article
Article Version
Scholarly/refereed, publisher version
Rights
Copyright © 2018 Utesch et al.
Metadata
Show full item recordAbstract
Fungal pathogens kill more people per year globally than malaria or tuberculosis and threaten international food security through crop destruction. New sophisticated strategies to inhibit fungal growth are thus urgently needed. Among the potential candidate molecules that strongly inhibit fungal spore germination are small cationic, cysteine-stabilized proteins of the AFP family secreted by a group of filamentous Ascomycetes. Its founding member, AFP from Aspergillus giganteus, is of particular interest since it selectively inhibits the growth of filamentous fungi without affecting the viability of mammalian, plant, or bacterial cells. AFPs are also characterized by their high efficacy and stability. Thus, AFP can serve as a lead compound for the development of novel antifungals. Notably, all members of the AFP family comprise a γ-core motif which is conserved in all antimicrobial proteins from pro- and eukaryotes and known to interfere with the integrity of cytoplasmic plasma membranes. In this study, we used classical molecular dynamics simulations combined with wet laboratory experiments and nuclear magnetic resonance (NMR) spectroscopy to characterize the structure and dynamical behavior of AFP isomers in solution and their interaction with fungal model membranes. We demonstrate that the γ-core motif of structurally conserved AFP is the key for its membrane interaction, thus verifying for the first time that the conserved γ-core motif of antimicrobial proteins is directly involved in protein-membrane interactions. Furthermore, molecular dynamic simulations suggested that AFP does not destroy the fungal membrane by pore formation but covers its surface in a well-defined manner, using a multistep mechanism to destroy the membranes integrity.
Description
This work is licensed under a Creative Commons Attribution 4.0 International License.
Collections
Citation
Utesch, T., de Miguel Catalina, A., Schattenberg, C., Paege, N., Schmieder, P., Krause, E., Miao, Y., McCammon, J. A., Meyer, V., Jung, S., & Mroginski, M. A. (2018). A Computational Modeling Approach Predicts Interaction of the Antifungal Protein AFP from Aspergillus giganteus with Fungal Membranes via Its γ-Core Motif. mSphere, 3(5), e00377-18. https://doi.org/10.1128/mSphere.00377-18
Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.