KUKU

KU ScholarWorks

  • myKU
  • Email
  • Enroll & Pay
  • KU Directory
    • Login
    View Item 
    •   KU ScholarWorks
    • Chemistry
    • Chemistry Scholarly Works
    • View Item
    •   KU ScholarWorks
    • Chemistry
    • Chemistry Scholarly Works
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A novel tripeptide model of nickel superoxide dismutase

    Thumbnail
    View/Open
    Krause_2010.pdf (296.2Kb)
    Issue Date
    2010-01-18
    Author
    Krause, Mary Elizabeth
    Glass, Amanda M.
    Jackson, Timothy A.
    Laurence, Jennifer S.
    Publisher
    American Chemical Society
    Type
    Article
    Article Version
    Scholarly/refereed, author accepted manuscript
    Metadata
    Show full item record
    Abstract
    Nickel superoxide dismutase (Ni-SOD) catalyzes the disproportionation of superoxide to molecular oxygen and hydrogen peroxide, but the overall reaction mechanism has yet to be determined. Peptide-based models of the 2N:2S nickel coordination sphere of Ni-SOD have provided some insight into the mechanism of this enzyme. Here we show that the coordination sphere of Ni-SOD can be mimicked using the tripeptide asparagine-cysteine-cysteine (NCC). NCC binds nickel with extremely high affinity at physiological pH with 2N:2S geometry, as demonstrated by electronic absorption and circular dichroism (CD) data. Like Ni-SOD, Ni-NCC has mixed amine/amide ligation that favors metal-based oxidation over ligand-based oxidation. Electronic absorption, CD, and magnetic CD data (MCD) collected for Ni-NCC are consistent with a diamagnetic Ni(II) center bound in square planar geometry. Ni-NCC is quasi-reversibly oxidized with a midpoint potential of 0.72(2) V (versus Ag/AgCl) and breaks down superoxide in an enzyme-based assay, supporting its potential use as a model for Ni-SOD chemistry.
    Description
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in the Inorganic Chemistry, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://doi.org/10.1021/ic901828m.
    URI
    http://hdl.handle.net/1808/24486
    DOI
    https://doi.org/10.1021/ic901828m
    Collections
    • Chemistry Scholarly Works [557]
    Citation
    Krause, M. E., Glass, A. M., Jackson, T. A., & Laurence, J. S. (2010). A novel tripeptide model of nickel superoxide dismutase. Inorganic Chemistry, 49(2), 362–364. http://doi.org/10.1021/ic901828m.

    Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.


    We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.


    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    Browse

    All of KU ScholarWorksCommunities & CollectionsThis Collection

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    The University of Kansas
      Contact KU ScholarWorks
    Lawrence, KS | Maps
     
    • Academics
    • Admission
    • Alumni
    • Athletics
    • Campuses
    • Giving
    • Jobs

    The University of Kansas prohibits discrimination on the basis of race, color, ethnicity, religion, sex, national origin, age, ancestry, disability, status as a veteran, sexual orientation, marital status, parental status, gender identity, gender expression and genetic information in the University’s programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Director of the Office of Institutional Opportunity and Access, IOA@ku.edu, 1246 W. Campus Road, Room 153A, Lawrence, KS, 66045, (785)864-6414, 711 TTY.

     Contact KU
    Lawrence, KS | Maps