KUKU

KU ScholarWorks

  • myKU
  • Email
  • Enroll & Pay
  • KU Directory
    • Login
    View Item 
    •   KU ScholarWorks
    • Molecular Biosciences
    • Molecular Biosciences Scholarly Works
    • View Item
    •   KU ScholarWorks
    • Molecular Biosciences
    • Molecular Biosciences Scholarly Works
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Ligand Binding Site Detection b Local Structure Alignment and Its Performance Complementarity

    Thumbnail
    View/Open
    Lee_2013.pdf (3.633Mb)
    Issue Date
    2013-09-23
    Author
    Lee, Hui Sun
    Im, Wonpil
    Publisher
    American Chemical Society
    Type
    Article
    Article Version
    Scholarly/refereed, author accepted manuscript
    Rights
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in Journal of Chemical Information and Modeling, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://doi.org/10.1021/ci300178e.
    Metadata
    Show full item record
    Abstract
    Accurate determination of potential ligand binding sites (BS) is a key step for protein function characterization and structure-based drug design. Despite promising results of template-based BS prediction methods using global structure alignment (GSA), there is a room to improve the performance by properly incorporating local structure alignment (LSA) because BS are local structures and often similar for proteins with dissimilar global folds. We present a template-based ligand BS prediction method using G-LoSA, our LSA tool. A large benchmark set validation shows that G-LoSA predicts drug-like ligands’ positions in single-chain protein targets more precisely than TM-align, a GSA-based method, while the overall success rate of TM-align is better. G-LoSA is particularly efficient for accurate detection of local structures conserved across proteins with diverse global topologies. Recognizing the performance complementarity of G-LoSA to TM-align and a non-template geometry-based method, fpocket, a robust consensus scoring method, CMCS-BSP (Complementary Methods and Consensus Scoring for ligand Binding Site Prediction), is developed and shows improvement on prediction accuracy. The G-LoSA source code is freely available at http://im.bioinformatics.ku.edu/GLoSA.
    URI
    http://hdl.handle.net/1808/24230
    DOI
    https://doi.org/10.1021/ci4003602
    Collections
    • Molecular Biosciences Scholarly Works [581]
    Citation
    Lee, H. S., & Im, W. (2013). Ligand Binding Site Detection by Local Structure Alignment and Its Performance Complementarity. Journal of Chemical Information and Modeling, 53(9), 10.1021/ci4003602. http://doi.org/10.1021/ci4003602

    Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.


    We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.


    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    Browse

    All of KU ScholarWorksCommunities & CollectionsThis Collection

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    The University of Kansas
      Contact KU ScholarWorks
    Lawrence, KS | Maps
     
    • Academics
    • Admission
    • Alumni
    • Athletics
    • Campuses
    • Giving
    • Jobs

    The University of Kansas prohibits discrimination on the basis of race, color, ethnicity, religion, sex, national origin, age, ancestry, disability, status as a veteran, sexual orientation, marital status, parental status, gender identity, gender expression and genetic information in the University’s programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Director of the Office of Institutional Opportunity and Access, IOA@ku.edu, 1246 W. Campus Road, Room 153A, Lawrence, KS, 66045, (785)864-6414, 711 TTY.

     Contact KU
    Lawrence, KS | Maps