KUKU

KU ScholarWorks

  • myKU
  • Email
  • Enroll & Pay
  • KU Directory
    • Login
    View Item 
    •   KU ScholarWorks
    • Engineering
    • Bioengineering Program Scholarly Works
    • View Item
    •   KU ScholarWorks
    • Engineering
    • Bioengineering Program Scholarly Works
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Enabling Surgical Placement of Hydrogels through Achieving Paste-Like Rheological Behavior in Hydrogel Precursor Solutions

    Thumbnail
    View/Open
    Beck_Springer_2015.pdf (713.0Kb)
    Issue Date
    2015-10
    Author
    Beck, Emily Claire
    Lohman, Brooke L.
    Tabakh, Daniel B.
    Kieweg, Sarah L.
    Gehrke, Stevin H.
    Berkland, Cory J.
    Detamore, Michael S.
    Publisher
    Springer Verlag
    Type
    Article
    Article Version
    Scholarly/refereed, author accepted manuscript
    Rights
    © Biomedical Engineering Society 2015
    Metadata
    Show full item record
    Abstract
    Hydrogels are a promising class of materials for tissue regeneration, but they lack the ability to be molded into a defect site by a surgeon because hydrogel precursors are liquid solutions that are prone to leaking during placement. Therefore, although the main focus of hydrogel technology and developments are on hydrogels in their crosslinked form, our primary focus is on improving the fluid behavior of hydrogel precursor solutions. In this work, we introduce a method to achieve paste-like hydrogel precursor solutions by combining hyaluronic acid nanoparticles with traditional crosslinked hyaluronic acid hydrogels. Prior to crosslinking, the samples underwent rheological testing to assess yield stress and recovery using linear hyaluronic acid as a control. The experimental groups containing nanoparticles were the only solutions that exhibited a yield stress, demonstrating that the nanoparticulate rather than the linear form of hyaluronic acid was necessary to achieve paste-like behavior. The gels were also photocrosslinked and further characterized as solids, where it was demonstrated that the inclusion of nanoparticles did not adversely affect the compressive modulus and that encapsulated bone marrow-derived mesenchymal stem cells remained viable. Overall, this nanoparticle-based approach provides a platform hydrogel system that exhibits a yield stress prior to crosslinking, and can then be crosslinked into a hydrogel that is capable of encapsulating cells that remain viable. This behavior may hold significant impact for hydrogel applications where a paste-like behavior is desired in the hydrogel precursor solution.
    URI
    http://hdl.handle.net/1808/24063
    DOI
    https://doi.org/10.1007/s10439-015-1277-8
    Collections
    • Bioengineering Program Scholarly Works [144]
    Citation
    Beck, E. C., Lohman, B. L., Tabakh, D. B., Kieweg, S. L., Gehrke, S. H., Berkland, C. J., & Detamore, M. S. (2015). Enabling Surgical Placement of Hydrogels through Achieving Paste-Like Rheological Behavior in Hydrogel Precursor Solutions. Annals of Biomedical Engineering, 43(10), 2569–2576. http://doi.org/10.1007/s10439-015-1277-8

    Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.


    We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.


    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    Browse

    All of KU ScholarWorksCommunities & CollectionsThis Collection

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    The University of Kansas
      Contact KU ScholarWorks
    Lawrence, KS | Maps
     
    • Academics
    • Admission
    • Alumni
    • Athletics
    • Campuses
    • Giving
    • Jobs

    The University of Kansas prohibits discrimination on the basis of race, color, ethnicity, religion, sex, national origin, age, ancestry, disability, status as a veteran, sexual orientation, marital status, parental status, gender identity, gender expression and genetic information in the University’s programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Director of the Office of Institutional Opportunity and Access, IOA@ku.edu, 1246 W. Campus Road, Room 153A, Lawrence, KS, 66045, (785)864-6414, 711 TTY.

     Contact KU
    Lawrence, KS | Maps