The Fat-like Cadherin CDH-4 Acts Cell-Non-Autonomously in Anterior-Posterior Neuroblast Migration
dc.contributor.author | Sundarajan, Lakshmi | |
dc.contributor.author | Norris, Megan L. | |
dc.contributor.author | Schoneich, Sebastian | |
dc.contributor.author | Ackley, Brian D. | |
dc.contributor.author | Lundquist, Erik A. | |
dc.date.accessioned | 2017-03-06T22:36:50Z | |
dc.date.available | 2017-03-06T22:36:50Z | |
dc.date.issued | 2015-08-15 | |
dc.identifier.citation | Sundararajan, Lakshmi, Megan L. Norris, Sebastian Schöneich, Brian D. Ackley, and Erik A. Lundquist. "The Fat-like Cadherin CDH-4 Acts Cell-non-autonomously in Anteriorâ posterior Neuroblast Migration." Developmental Biology 392.2 (2014): 141-52. | en_US |
dc.identifier.uri | http://hdl.handle.net/1808/23344 | |
dc.description.abstract | Directed migration of neurons is critical in the normal and pathological development of the brain and central nervous system. In C. elegans, the bilateral Q neuroblasts, QR on the right and QL on the left, migrate anteriorly and posteriorly, respectively. Initial protrusion and migration of the Q neuroblasts is autonomously controlled by the transmembrane proteins UNC-40/DCC, PTP-3/LAR, and MIG-21. As QL migrates posteriorly, it encounters and EGL-20/Wnt signal that induces MAB-5/Hox expression that drives QL descendant posterior migration. QR migrates anteriorly away from EGL-20/Wnt and does not activate MAB-5/Hox, resulting in anterior QR descendant migration. A forward genetic screen for new mutations affecting initial Q migrations identified alleles of cdh-4, which caused defects in both QL and QR directional migration similar to unc-40, ptp-3, and mig-21. Previous studies showed that in QL, PTP-3/LAR and MIG-21 act in a pathway in parallel to UNC-40/DCC to drive posterior QL migration. Here we show genetic evidence that CDH-4 acts in the PTP-3/MIG-21 pathway in parallel to UNC-40/DCC to direct posterior QL migration. In QR, the PTP-3/MIG-21 and UNC-40/DCC pathways mutually inhibit each other, allowing anterior QR migration. We report here that CDH-4 acts in both the PTP-3/MIG-21 and UNC-40/DCC pathways in mutual inhibition in QR, and that CDH-4 acts cell-non-autonomously. Interaction of CDH-4 with UNC-40/DCC in QR but not QL represents an inherent left-right asymmetry in the Q cells, the nature of which is not understood. We conclude that CDH-4 might act as a permissive signal for each Q neuroblast to respond differently to anterior-posterior guidance information based upon inherent left-right asymmetries in the Q neuroblasts. | en_US |
dc.publisher | Elsevier | en_US |
dc.rights | This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License 3.0 (CC BY-NC-ND 3.0 US), which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/ | |
dc.title | The Fat-like Cadherin CDH-4 Acts Cell-Non-Autonomously in Anterior-Posterior Neuroblast Migration | en_US |
dc.type | Article | en_US |
kusw.kuauthor | Lundquist, Erik A. | |
kusw.kudepartment | Molecular Biosciences | en_US |
kusw.oanotes | Per SHERPA/RoMEO 3/6/2017: Author's Pre-print: green tick author can archive pre-print (ie pre-refereeing) Author's Post-print: green tick author can archive post-print (ie final draft post-refereeing) Publisher's Version/PDF: cross author cannot archive publisher's version/PDF General Conditions: Authors pre-print on any website, including arXiv and RePEC Author's post-print on author's personal website immediately Author's post-print on open access repository after an embargo period of between 12 months and 48 months Permitted deposit due to Funding Body, Institutional and Governmental policy or mandate, may be required to comply with embargo periods of 12 months to 48 months Author's post-print may be used to update arXiv and RepEC Publisher's version/PDF cannot be used Must link to publisher version with DOI Author's post-print must be released with a Creative Commons Attribution Non-Commercial No Derivatives License | en_US |
dc.identifier.doi | 10.1016/j.ydbio.2014.06.009 | en_US |
kusw.oaversion | Scholarly/refereed, author accepted manuscript | en_US |
kusw.oapolicy | This item meets KU Open Access policy criteria. | en_US |
dc.rights.accessrights | openAccess |
Files in this item
This item appears in the following Collection(s)
Except where otherwise noted, this item's license is described as: This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License 3.0 (CC BY-NC-ND 3.0 US), which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.