Structure-Activity Relationships for the Interactions of 2’- and 3’-(O)-(N-Methyl)anthraniloyl-Substituted Purine and Pyrimidine Nucleotides with Mammalian Adenylyl Cyclases

View/ Open
Issue Date
2011-05-18Author
Pinto, Cibele
Lushington, Gerald H.
Richter, Mark
Gille, Andreas
Geduhn, Jens
Konig, Burkhard
Mou, Tung-Chung
Sprang, Stephen R.
Seifert, Roland
Publisher
Elsevier
Type
Article
Article Version
Scholarly/refereed, author accepted manuscript
Rights
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License 3.0 (CC BY-NC-ND 3.0 US), which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
Metadata
Show full item recordAbstract
Membranous adenylyl cyclases (ACs) play a key role in signal transduction and are promising drug targets. In previous studies we showed that 2’,3’-(O)-(N-methylanthraniloyl) (MANT)-substituted nucleotides are potent AC inhibitors. The aim of this study was to provide systematic structure-activity relationships for 21 (M)ANT-substituted nucleotides at the purified catalytic AC subunit heterodimer VC1:IIC2, the VC1:VC1 homodimer and recombinant ACs 1, 2 and 5. (M)ANT-nucleotides inhibited fully activated VC1:IIC2 in the order of affinity for bases hypoxanthine > uracil > cytosine > adenine ~ guanine ≫ xanthine. Omission of a hydroxyl group at the 2’ or 3’-position reduced inhibitor potency as did introduction of a γ-thiophosphate group or omission of the γ-phosphate group. Substitution of the MANT-group by an ANT-group had little effect on affinity. Although all nucleotides bound to VC1:IIC2 similarly according to the tripartite pharmacophore model with a site for the base, the ribose, and the phosphate chain, nucleotides exhibited subtle differences in their binding modes as revealed by fluorescence spectroscopy and molecular modelling. MANT-nucleotides also differentially interacted with the VC1:VC1 homodimer as assessed by fluorescence spectroscopy and modelling. Similar structure-activity relationships as for VC1:IIC2 were obtained for recombinant ACs 1, 2 and 5, with AC2 being the least sensitive AC isoform in terms of inhibition. Overall, ACs possess a broad base-specificity with no preference for the “cognate” base adenine as verified by enzyme inhibition, fluorescence spectroscopy and molecular modelling. These properties of ACs are indicative for ligand-specific conformational landscapes that extend to the VC1:VC1 homodimer and should facilitate development of non-nucleotide inhibitors.
Collections
Citation
Pinto, Cibele, Gerald H. Lushington, Mark Richter, Andreas Gille, Jens Geduhn, Burkhard König, Tung-Chung Mou, Stephen R. Sprang, and Roland Seifert. "Structureâ activity Relationships for the Interactions of 2â ²- and 3â ²-(O)-(N-methyl)anthraniloyl-substituted Purine and Pyrimidine Nucleotides with Mammalian Adenylyl Cyclases." Biochemical Pharmacology 82.4 (2011): 358-70.
Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.
Except where otherwise noted, this item's license is described as: This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License 3.0 (CC BY-NC-ND 3.0 US), which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.