KUKU

KU ScholarWorks

  • myKU
  • Email
  • Enroll & Pay
  • KU Directory
    • Login
    View Item 
    •   KU ScholarWorks
    • Pharmaceutical Chemistry
    • Pharmaceutical Chemistry Scholarly Works
    • View Item
    •   KU ScholarWorks
    • Pharmaceutical Chemistry
    • Pharmaceutical Chemistry Scholarly Works
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Singlet oxygen inactivates protein tyrosine phosphatase-1B by oxidation of the active site cysteine

    Thumbnail
    View/Open
    SchoeneichC_BC_187(10-77)1399.pdf (124.1Kb)
    Issue Date
    2006
    Author
    von Montfort, Claudia
    Sharov, Victor S.
    Metzger, Sabine
    Schoeneich, Christian
    Sies, Helmut
    Klotz, Lars-Oliver
    Publisher
    Walter de Gruyter
    Type
    Article
    Article Version
    Scholarly/refereed, publisher version
    Metadata
    Show full item record
    Abstract
    Singlet oxygen (1O2), an electronically excited form of molecular oxygen, is a mediator of biological effects of ultraviolet A radiation, stimulating signaling cascades in human cells. We demonstrate here that 1O2 generated by photosensitization or by thermodecomposition of 3,3′-(1,4-naphthylidene)dipropionate-1,4-endoperoxide inactivates isolated protein tyrosine phosphatases (PTPases). PTPase activities of PTP1B or CD45 were abolished by low concentrations of 1O2, but were largely restored by post-treatment with dithiothreitol. Electrospray ionization mass spectrometry analysis of tryptic digests of PTP1B exposed to 1O2 revealed oxidation of active-site Cys215 as the only cysteine residue oxidized. In summary, 1O2 may activate signaling cascades by interfering with phosphotyrosine dephosphorylation.
    URI
    http://hdl.handle.net/1808/17662
    DOI
    https://doi.org/10.1515/BC.2006.175
    Collections
    • Pharmaceutical Chemistry Scholarly Works [327]
    Citation
    Montfort et al. "Singlet oxygen inactivates protein tyrosine phosphatase-1B by oxidation of the active site cysteine." Biological Chemistry. Volume 387, Issue 10/11, Pages 1399–1404, ISSN (Online) 1437-4315, ISSN (Print) 1431-6730, November 2006. http://dx.doi.org/10.1515/BC.2006.175

    Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.


    We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.


    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    Browse

    All of KU ScholarWorksCommunities & CollectionsThis Collection

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    The University of Kansas
      Contact KU ScholarWorks
    Lawrence, KS | Maps
     
    • Academics
    • Admission
    • Alumni
    • Athletics
    • Campuses
    • Giving
    • Jobs

    The University of Kansas prohibits discrimination on the basis of race, color, ethnicity, religion, sex, national origin, age, ancestry, disability, status as a veteran, sexual orientation, marital status, parental status, gender identity, gender expression and genetic information in the University’s programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Director of the Office of Institutional Opportunity and Access, IOA@ku.edu, 1246 W. Campus Road, Room 153A, Lawrence, KS, 66045, (785)864-6414, 711 TTY.

     Contact KU
    Lawrence, KS | Maps