Show simple item record

dc.contributor.authorPiotr Kozbialen_US
dc.contributor.authorArcady Mushegianen_US
dc.date.accessioned2009-05-05T16:13:46Z
dc.date.available2009-05-05T16:13:46Z
dc.date.issued2004-12-16en_US
dc.identifier.citationPiotr Kozbial;Arcady Mushegian: Natural history of S-adenosylmethionine-binding proteins. BMC Struct Biol 2005, 5(1):19.en_US
dc.identifier.urihttp://hdl.handle.net/2271/591en_US
dc.description.abstractBACKGROUND:S-adenosylmethionine is a source of diverse chemical groups used in biosynthesis and modification of virtually every class of biomolecules. The most notable reaction requiring S-adenosylmethionine, transfer of methyl group, is performed by a large class of enzymes, S-adenosylmethionine-dependent methyltransferases, which have been the focus of considerable structure-function studies. Evolutionary trajectories of these enzymes, and especially of other classes of S-adenosylmethionine-binding proteins, nevertheless, remain poorly understood. We addressed this issue by computational comparison of sequences and structures of various S-adenosylmethionine-binding proteins.RESULTS:Two widespread folds, Rossmann fold and TIM barrel, have been repeatedly used in evolution for diverse types of S-adenosylmethionine conversion. There were also cases of recruitment of other relatively common folds for S-adenosylmethionine binding. Several classes of proteins have unique unrelated folds, specialized for just one type of chemistry and unified by the theme of internal domain duplications. In several cases, functional divergence is evident, when evolutionarily related enzymes have changed the mode of binding and the type of chemical transformation of S-adenosylmethionine. There are also instances of functional convergence, when biochemically similar processes are performed by drastically different classes of S-adenosylmethionine-binding proteins.Comparison of remote sequence similarities and analysis of phyletic patterns suggests that the last universal common ancestor of cellular life had between 10 and 20 S-adenosylmethionine-binding proteins from at least 5 fold classes, providing for S-adenosylmethionine formation, polyamine biosynthesis, and methylation of several substrates, including nucleic acids and peptide chain release factor.CONCLUSION:We have observed several novel relationships between families that were not known to be related before, and defined 15 large superfamilies of SAM-binding proteins, at least 5 of which may have been represented in the last common ancestor.en_US
dc.languageenen_US
dc.language.isoen_USen_US
dc.publisherBioMedCentralen_US
dc.relation.isversionofhttp://www.biomedcentral.com/1472-6807/5/19en_US
dc.relation.hasversionhttp://www.biomedcentral.com/content/pdf/1472-6807-5-19.pdfen_US
dc.rightsThis is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.en_US
dc.rights.urihttp://creativecommons.org/licenses/by/2.0en_US
dc.titleNatural history of S-adenosylmethionine-binding proteinsen_US
dc.typeArticleen_US
dc.identifier.doi10.1186/1472-6807-5-19en_US
dc.identifier.pmidPMC15603587en_US
dc.rights.accessrightsopenAccessen_US
dc.date.captured2009-04-27en_US


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Except where otherwise noted, this item's license is described as: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.