A topological algorithm for identification of structural domains of proteins

View/ Open
Issue Date
2006-02-17Author
Frank Emmert-Streib
Arcady Mushegian
Publisher
BioMedCentral
Type
Article
Published Version
http://www.biomedcentral.com/1471-2105/8/237Version
http://www.biomedcentral.com/content/pdf/1471-2105-8-237.pdf
Rights
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Metadata
Show full item recordAbstract
BACKGROUND:Identification of the structural domains of proteins is important for our understanding of the organizational principles and mechanisms of protein folding, and for insights into protein function and evolution. Algorithmic methods of dissecting protein of known structure into domains developed so far are based on an examination of multiple geometrical, physical and topological features. Successful as many of these approaches are, they employ a lot of heuristics, and it is not clear whether they illuminate any deep underlying principles of protein domain organization. Other well-performing domain dissection methods rely on comparative sequence analysis. These methods are applicable to sequences with known and unknown structure alike, and their success highlights a fundamental principle of protein modularity, but this does not directly improve our understanding of protein spatial structure.RESULTS:We present a novel graph-theoretical algorithm for the identification of domains in proteins with known three-dimensional structure. We represent the protein structure as an undirected, unweighted and unlabeled graph whose nodes correspond to the secondary structure elements and edges represent physical proximity of at least one pair of alpha carbon atoms from two elements. Domains are identified as constrained partitions of the graph, corresponding to sets of vertices obtained by the maximization of the cycle distributions found in the graph. When a partition is found, the algorithm is iteratively applied to each of the resulting subgraphs. The decision to accept or reject a tentative cut position is based on a specific classifier. The algorithm is applied iteratively to each of the resulting subgraphs and terminates automatically if partitions are no longer accepted. The distribution of cycles is the only type of information on which the decision about protein dissection is based. Despite the barebone simplicity of the approach, our algorithm approaches the best heuristic algorithms in accuracy.CONCLUSION:Our graph-theoretical algorithm uses only topological information present in the protein structure itself to find the domains and does not rely on any geometrical or physical information about protein molecule. Perhaps unexpectedly, these drastic constraints on resources, which result in a seemingly approximate description of protein structures and leave only a handful of parameters available for analysis, do not lead to any significant deterioration of algorithm accuracy. It appears that protein structures can be rigorously treated as topological rather than geometrical objects and that the majority of information about protein domains can be inferred from the coarse-grained measure of pairwise proximity between elements of secondary structure elements.
Collections
Citation
Frank Emmert-Streib;Arcady Mushegian: A topological algorithm for identification of structural domains of proteins. BMC Bioinformatics 2007, 8(1):237.
Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.
The following license files are associated with this item:
Except where otherwise noted, this item's license is described as: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.