Show simple item record

dc.contributor.authorSlipicevic, Ana
dc.contributor.authorHolm, Ruth
dc.contributor.authorEmilsen, Elisabeth
dc.contributor.authorRee Rosnes, Anne Katrine
dc.contributor.authorWelch, Danny R
dc.contributor.authorMaelandsmo, Gunhild M
dc.contributor.authorFlorenes, Vivi Ann
dc.date.accessioned2015-07-16T12:31:03Z
dc.date.available2015-07-16T12:31:03Z
dc.date.issued2012-02-22en_US
dc.identifier.urihttp://hdl.handle.net/2271/1339en_US
dc.description.abstractAbstract Background/aims Breast cancer metastasis suppressor 1 (BRMS1) blocks metastasis in melanoma xenografts; however, its usefulness as a biomarker in human melanomas has not been widely studied. The goal was to measure BRMS1 expression in benign nevi, primary and metastatic melanomas and evaluate its impact on disease progression and prognosis. Methods Paraffin-embedded tissue from 155 primary melanomas, 69 metastases and 15 nevi was examined for BRMS1 expression using immunohistochemistry. siRNA mediated BRMS1 down-regulation was used to study impact on invasion and migration in melanoma cell lines. Results A significantly higher percentage of nevi (87%), compared to primary melanomas (20%) and metastases (48%), expressed BRMS1 in the nucelus (p < 0.0001). Strong nuclear staining intensity was observed in 67% of nevi, and in 9% and 24% of the primary and metastatic melanomas, respectively (p < 0.0001). Comparable cytoplasmic expression was observed (nevi; 87%, primaries; 86%, metastases; 72%). However, a decline in cytoplasmic staining intensity was observed in metastases compared to nevi and primary tumors (26%, 47%, and 58%, respectively, p < 0.0001). Score index (percentage immunopositive celles multiplied with staining intensity) revealed that high cytoplasmic score index (≥ 4) was associated with thinner tumors (p = 0.04), lack of ulceration (p = 0.02) and increased disease-free survival (p = 0.036). When intensity and percentage BRMS1 positive cells were analyzed separately, intensity remained associated with tumor thickness (p = 0.024) and ulceration (p = 0.004) but was inversely associated with expression of proliferation markers (cyclin D3 (p = 0.008), cyclin A (p = 0.007), and p21Waf1/Cip1 (p = 0.009)). Cytoplasmic score index was inversely associated with nuclear p-Akt (p = 0.013) and positively associated with cytoplasmic p-ERK1/2 expression (p = 0.033). Nuclear BRMS1 expression in ≥ 10% of primary melanoma cells was associated with thicker tumors (p = 0.016) and decreased relapse-free period (p = 0.043). Nuclear BRMS1 was associated with expression of fatty acid binding protein 7 (FABP7; p = 0.011), a marker of invasion in melanomas. In line with this, repression of BRMS1 expression reduced the ability of melanoma cells to migrate and invade in vitro. Conclusion Our data suggest that BRMS1 is localized in cytoplasm and nucleus of melanocytic cells and that cellular localization determines its in vivo effect. We hypothesize that cytoplasmic BRMS1 restricts melanoma progression while nuclear BRMS1 possibly promotes melanoma cell invasion. Please see related article: http://www.biomedcentral.com/1741-7015/10/19
dc.titleCytoplasmic BRMS1 expression in malignant melanoma is associated with increased disease-free survival
dc.typeArticleen_US
dc.identifier.doi10.1186/1471-2407-12-73en_US
dc.date.updated2012-05-01T11:09:29Z
dc.description.versionPeer Reviewed
dc.rights.holderSlipicevic et al.; licensee BioMed Central Ltd.
dc.rights.accessrightsopenAccessen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record