Show simple item record

dc.contributor.authorBrunsell, Nathaniel A.
dc.contributor.authorMechem, David B.
dc.contributor.authorAnderson, M. C.
dc.date.accessioned2011-12-29T19:05:06Z
dc.date.available2011-12-29T19:05:06Z
dc.date.issued2011-04-11
dc.identifier.citationBrunsell, N. A., D. B. Mechem and M. C. Anderson: 2011, Surface heterogeneity impacts on boundary layer dynamics via energy balance partitioning. Atmospheric Chemistry and Physics, 11, 3403-3416. http://dx.doi.org/10.5194/acp-11-3403-2011en_US
dc.identifier.urihttp://hdl.handle.net/1808/8650
dc.description.abstractThe role of land-atmosphere interactions under heterogeneous surface conditions is investigated in order to identify mechanisms responsible for altering surface heat and moisture fluxes. Twelve coupled land surface – large eddy simulation scenarios with four different length scales of surface variability under three different horizontal wind speeds are used in the analysis. The base case uses Landsat ETM imagery over the Cloud Land Surface Interaction Campaign (CLASIC) field site for 3 June 2007. Using wavelets, the surface fields are band-pass filtered in order to maintain the spatial mean and variances to length scales of 200 m, 1600 m, and 12.8 km as lower boundary conditions to the model (approximately 0.25, 1.2 and 9.5 times boundary layer height). The simulations exhibit little variation in net radiation. Rather, there is a pronounced change in the partitioning of the surface energy between sensible and latent heat flux. The sensible heat flux is dominant for intermediate surface length scales. For smaller and larger scales of surface heterogeneity, which can be viewed as being more homogeneous, the latent heat flux becomes increasingly important. The simulations showed approximately 50Wm−2 difference in the spatially averaged latent heat flux. The results reflect a general decrease of the Bowen ratio as the surface conditions transition from heterogeneous to homogeneous. Air temperature is less sensitive to variations in surface heterogeneity than water vapor, which implies that the role of surface heterogeneity may be to maximize convective heat fluxes through modifying and maintaining local temperature gradients. More homogeneous surface conditions (i.e. smaller length scales), on the other hand, tend to maximize latent heat flux. The intermediate scale (1600 m) this does not hold, and is a more complicated interaction of scales. Scalar vertical profiles respond predictably to the partitioning of surface energy. Fourier spectra of the vertical wind speed, air temperature and specific humidity (w˜ , T˜ and q˜ ) and associated cospectra (w˜ T˜ , w˜ q˜ and T˜ q˜ ), however, are insensitive to the length scale of surface heterogeneity, but the near surface spectra are sensitive to the mean wind speed.en_US
dc.description.sponsorshipNational Science Foundation EPSCoR KAN0061396/ KAN006263en_US
dc.language.isoen_USen_US
dc.publisherEuropean Geosciences Unionen_US
dc.titleSurface heterogeneity impacts on boundary layer dynamics via energy balance partitioningen_US
dc.typeArticle
kusw.kuauthorBrunsell, Nathaniel A.
kusw.kudepartmentGeographyen_US
dc.identifier.doi10.5194/acp-11-3403-2011
kusw.oaversionScholarly/refereed, publisher version
kusw.oapolicyThis item meets KU Open Access policy criteria.
dc.rights.accessrightsopenAccess


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record