Polynomials associated with graph coloring and orientations
Issue Date
2011-04-26Author
Humpert, Brandon Eugene
Publisher
University of Kansas
Format
84 pages
Type
Dissertation
Degree Level
Ph.D.
Discipline
Mathematics
Rights
This item is protected by copyright and unless otherwise specified the copyright of this thesis/dissertation is held by the author.
Metadata
Show full item recordAbstract
We study colorings and orientations of graphs in two related contexts. Firstly, we generalize Stanley's chromatic symmetric function using the k-balanced colorings of Pretzel to create a new graph invariant. We show that in fact this invariant is a quasisymmetric function which has a positive expansion in the fundamental basis. We also define a graph invariant generalizing the chromatic polynomial for which we prove some theorems analogous to well-known theorems about the chromatic polynomial. Secondly, we examine graphs and graph colorings in the context of the combinatorial Hopf algebras of Aguiar, Bergeron and Sottile. By doing so, we are able to obtain a new formula for the antipode of a Hopf algebra on graphs previously studied by Schmitt. We also obtain new interpretations of evaluations of the Tutte polynomial.
Collections
- Dissertations [4660]
- Mathematics Dissertations and Theses [179]
Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.