NEW ESTIMATES IN HARMONIC ANALYSIS FOR MIXED LEBESGUE SPACES

View/ Open
Issue Date
2010-07-16Author
Ward, Erika L.
Publisher
University of Kansas
Format
70 pages
Type
Dissertation
Degree Level
Ph.D.
Discipline
Mathematics
Rights
This item is protected by copyright and unless otherwise specified the copyright of this thesis/dissertation is held by the author.
Metadata
Show full item recordAbstract
Mixed Lebesgue spaces are a generalization of Lp spaces that occur naturally when considering functions that depend on quantities with different properties, such as space and time. We first present mixed Lebesgue versions of several classical results, including the boundedness of Calderon-Zygmund operators, a Littlewood-Paley theorem, and some other vector-valued inequalities. As applications we present a Leibniz's rule for fractional derivatives in the context of mixed-Lebesgue spaces, some sampling theorems and a characterization of mixed Lebesgue spaces in terms of wavelet coefficients.
Collections
- Dissertations [4660]
- Mathematics Dissertations and Theses [179]
Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.