Coarser connected topologies and non-normality points
Issue Date
2009-01-01Author
Yengulalp, Lynne Christine
Publisher
University of Kansas
Format
51 pages
Type
Dissertation
Degree Level
Ph.D.
Discipline
Mathematics
Rights
This item is protected by copyright and unless otherwise specified the copyright of this thesis/dissertation is held by the author.
Metadata
Show full item recordAbstract
We investigate two topics, coarser connected topologies and non-normality points. The motivating question in the first topic is: When does a space have a coarser connected topology with a nice topological property? We will discuss some results when the property is Hausdorff and prove that if X is a non-compact metric space that has weight at least the cardinality of the continuum, then it has a coarser connected metrizable topology. The second topic is concerned with the following question: When is a point of the Stone-Cech remainder of a space a non-normality point of the remainder? We will discuss the question in the case that X is a discrete space and then when X is a metric space without isolated points. We show that under certain set-theoretic conditions, if X is a locally compact metric space without isolated points then every point in the Stone-Cech remainder is a non-normality point of the remainder.
Collections
- Dissertations [4660]
- Mathematics Dissertations and Theses [179]
Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.