Extraction of active, contaminant degrading enzymes from soil

View/ Open
Issue Date
2023-02-17Author
Chacha, Wambura E.
Tran, Huu-Tuan
Scarlett, William R.
Hutchison, Justin M.
Publisher
Elsevier
Type
Article
Article Version
Scholarly/refereed, publisher version
Rights
© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license.
Metadata
Show full item recordAbstract
Soil microorganisms play critical roles in the degradation of micro-and nano-pollutants, and the corresponding proteins and enzymes play roles in pollutant recognition, transportation, and degradation. Our ability to study these pathways from soil samples is often complicated by the complex processes involved in extracting proteins from soil matrices. This study aimed to develop a new protein soil extraction protocol that yielded active, intracellular enzymes from the perchlorate degradation pathway, particularly perchlorate reductase. An indirect method, which focused on first separating the cells from the soil matrix, followed by cell lysis and enzyme extraction, was evaluated. The optimized indirect method achieved a final extraction efficiency of the active enzyme and total protein of 15.7 % and 3.3 %, respectively. The final step of separating enzymes from residual soil components resulted in the highest activity and protein losses of 67.7 % ± 14.8 % and 91.8 % ± 1.8 %, respectively. Five buffers, each at different concentrations (0.01 M, 0.05 M, and 0.1 M), were tested to enhance enzyme extraction efficiency. The best extractant requires careful consideration between the highest activity and the quality of the recovered enzymes. Coextraction of humic substances could be minimized by using 0.1 M as compared to 0.01 M and 0.05 M of sodium pyrophosphate; however, this resulted in less recovered activity compared to lower extractant concentrations.
Collections
Citation
Wambura E. Chacha, Huu-Tuan Tran, William R. Scarlett, Justin M. Hutchison, Extraction of active, contaminant degrading enzymes from soil, Applied Soil Ecology, Volume 187, 2023, 104841, ISSN 0929-1393, https://doi.org/10.1016/j.apsoil.2023.104841.
Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.