KUKU

KU ScholarWorks

  • myKU
  • Email
  • Enroll & Pay
  • KU Directory
    • Login
    View Item 
    •   KU ScholarWorks
    • Dissertations and Theses
    • Theses
    • View Item
    •   KU ScholarWorks
    • Dissertations and Theses
    • Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Dynamic Metasurface Grouping for IRS Optimization in Massive MIMO Communications

    Thumbnail
    View/Open
    Daniel_ku_0099M_18118_DATA_1.pdf (2.318Mb)
    Issue Date
    2022-05-31
    Author
    Daniel, Christian James
    Publisher
    University of Kansas
    Format
    88 pages
    Type
    Thesis
    Degree Level
    M.S.
    Discipline
    Electrical Engineering & Computer Science
    Rights
    Copyright held by the author.
    Metadata
    Show full item record
    Abstract
    Intelligent Reflecting Surfaces (IRSs) grant the ability to control what was once consideredthe uncontrollable part of wireless communications, the channel. These smart signal mirrors show promise to significantly improve the effective signal-to-noise-ratio (SNR) of cell-users when the line-of-sight (LOS) channel between the base station (BS) and user is blocked. IRSs use implementable optimized phase shifts that beamform a reflected signal around channel blockages, and because they are passive devices, they have the benefit of having low cost and low power consumption. Previous works have concluded that IRSs need several hundred elements to outperform relays. Unfortunately, overhead and complexity costs related to optimizing these devices limit their scope to single-input single-output (SISO) systems. With multiple-input multiple-output (MIMO) and Massive MIMO becoming crucial components to modern 5G and beyond networks, a way to mitigate these overhead costs and integrate IRS technology with the promising MIMO techniques is paramount for these devices to have a place within modern cell technologies. This thesis proposes an IRS element grouping scheme that greatly reduces the number of unique IRS phases that need to be calculated and sent to the IRS controller via the limited rate feedback channel and allows for the ideal number of groups to be obtained at the BS before data transmission. Three methods are proposed to design the phase shifts and element partitioning within our scheme to improve effective SNR in an IRS-aided system. In our simulations, it is shown that our best performing method is one that dynamically partitions the IRS elements into non-uniform groups based on information gathered from the reflected channel and then optimizes its phase shifts. This method successfully handles the overhead trade-off problem, and shows significant achievable rate improvement from previous works.
    URI
    https://hdl.handle.net/1808/34109
    Collections
    • Theses [3901]

    Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.


    We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.


    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    Browse

    All of KU ScholarWorksCommunities & CollectionsThis Collection

    My Account

    Login

    Statistics

    View Usage Statistics

    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    The University of Kansas
      Contact KU ScholarWorks
    Lawrence, KS | Maps
     
    • Academics
    • Admission
    • Alumni
    • Athletics
    • Campuses
    • Giving
    • Jobs

    The University of Kansas prohibits discrimination on the basis of race, color, ethnicity, religion, sex, national origin, age, ancestry, disability, status as a veteran, sexual orientation, marital status, parental status, gender identity, gender expression and genetic information in the University’s programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Director of the Office of Institutional Opportunity and Access, IOA@ku.edu, 1246 W. Campus Road, Room 153A, Lawrence, KS, 66045, (785)864-6414, 711 TTY.

     Contact KU
    Lawrence, KS | Maps