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Abstract

Intelligent Reflecting Surfaces (IRSs) grant the ability to control what was once considered

the uncontrollable part of wireless communications, the channel. These smart signal mirrors

show promise to significantly improve the effective signal-to-noise-ratio (SNR) of cell-users

when the line-of-sight (LOS) channel between the base station (BS) and user is blocked.

IRSs use implementable optimized phase shifts that beamform a reflected signal around

channel blockages, and because they are passive devices, they have the benefit of having low

cost and low power consumption. Previous works have concluded that IRSs need several

hundred elements to outperform relays [1]. Unfortunately, overhead and complexity costs

related to optimizing these devices limit their scope to single-input single-output (SISO)

systems [2]. With multiple-input multiple-output (MIMO) and Massive MIMO becoming

crucial components to modern 5G and beyond networks [3], a way to mitigate these overhead

costs and integrate IRS technology with the promising MIMO techniques is paramount for

these devices to have a place within modern cell technologies. This thesis proposes an IRS

element grouping scheme that greatly reduces the number of unique IRS phases that need

to be calculated and sent to the IRS controller via the limited rate feedback channel and

allows for the ideal number of groups to be obtained at the BS before data transmission.

Three methods are proposed to design the phase shifts and element partitioning within our

scheme to improve effective SNR in an IRS-aided system. In our simulations, it is shown that

our best performing method is one that dynamically partitions the IRS elements into non-

uniform groups based on information gathered from the reflected channel and then optimizes

its phase shifts. This method successfully handles the overhead trade-off problem, and shows

significant achievable rate improvement from previous works.
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Chapter 1

Introduction

1.1 Background

Whether referred to as an intelligent reflecting surface (IRS) or one of its many other names:

reconfigurable intelligent surface, software-controlled metasurface, large intelligent surface,

start reflect-arrays, etc., IRSs are an exciting new technology consisting of a planar metasur-

face made up of a massive number of individual elements, also known as meta-atoms, that

work together to effectively improve the wireless propagation environment [5]. Each of these

meta-atoms has the ability to induce a phase shift that focuses and directs the reflected sig-

nal within the wireless environment to the intended user. IRS technology is now being more

widely researched as recent developments in radio frequency micro electromechanical systems

and metamaterials have led to implementable IRS systems that are capable of reconfiguring

the phase shifts in real time [6]. IRS devices are now a feasible, yet unrefined, way to improve

data rate performance, especially in systems affected by a line-of-sight (LOS) blockage. The

leading benefit of IRS-aided systems over other techniques that improve the channel for bet-

ter data rate performance, namely a relay, is that IRSs do not consume transmit power [1].

Instead, an IRS passively reflects an incident signal by adjusting each IRS element’s capac-

itance and resistance through the use of a controller in response to the estimated wireless

channel to jointly control the reflected signal’s amplitude and phase shift [7]. By leveraging

a massive number of these low-cost passive elements, an IRS can achieve significant signal-

to-noise ratio (SNR) beamforming gain by constructively combining the reflected signals at

the receiver. However, this gain comes at a cost. Namely, an increase in complexity overhead
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due to the channel estimation and feedback time required to optimize many phase shifts.

The time needed for overhead reduces the time left for data transmission which directly

affects the maximum achievable data rate [2]. This creates a fundamental trade-off between

creating effective SNR gain through the implementation of many optimized phase shifts and

mitigating the overhead cost required to handle this implementation.

As the demand for higher data rates continues to surge as we approach 5G and beyond

networks, multiple-input multiple-output (MIMO) and massive MIMO technology are at

the forefront of current research and development. With the added complexity overhead

of multiple signal paths from transmit antennas and receivers, solving the overhead trade-

off problem is crucial to the effectiveness of IRS technology [8]. In this thesis we target

this trade-off problem, and propose methods to reduce complexity while maintaining a high

effective SNR to pave the way for massive MIMO applications.

1.2 Related Work

Many previous works have drawn the comparison between massive MIMO and IRS tech-

nology as massive MIMO takes advantage of many antennas to achieve spectral and energy

efficiency performance, and IRSs utilize many reflecting elements to do the same [9]. Unfor-

tunately, the SNR power-scaling properties of IRSs in practice are not as impactful as those

in massive MIMO [10]. However, for 5G and beyond, IRSs will be critical additions towards

the next generation of massive MIMO 2.0 [8], where IRSs populate the network environment

to provide reliable assistance to the massive MIMO base stations. These IRS devices can

be implemented on walls, billboards, building facades, etc. so that there is always an IRS

within close proximity of the user [11], [12].

Although a few works propose IRSs with some active elements (connected to the base-

band) [13], [14], many consider a completely passive surface [15], [16], [17] to be the most

practical for energy efficiency and ease of implementation. With a passive surface comes

issues with channel estimation and IRS reflection coefficient optimization without signal pro-
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cessing at the IRS. Some works consider perfect channel state information (CSI) [18], [19]

or statistical CSI [11] to simplify this problem. However, more realistic channel estimation

methods have been proposed in works such as [17] and [20] that do not rely on CSI or active

elements within an IRS.

After channel estimation, the base station has the ability to design the phase shifts for

optimized reflection. One strategy used is alternating optimization between the base station

transmit power allocation and IRS phase shift design as in [18] and [21]. Another method for

optimization is designing the reflection coefficients via deep learning developed using channel

information gathered over time [15], [16].

Complexity and overhead are the associated costs with these optimization methods, but

many IRS works do not consider the practical cost of overhead when optimizing their data

rate maximization problems. In [22], the hybrid beamforming performance is investigated

in a cell network system model, but the associated overhead costs from MIMO techniques

as opposed to single antenna transmission are not considered. In the experimental research

proposed in [23], a prototype IRS is tested in a controlled LOS scenario and the effective

SNR gain is modeled. While this work shows potential in IRS techniques, the cell-network

implementation requires complexity considerations that this work does not investigate. The

work in [24] puts into context the importance of overhead in IRS-aided systems, as there is

an inherent complexity trade-off when increasing the number of transmit or receive antennas.

More antennas will result in effective SNR gain while also leading to larger channel estimation

and feedback costs.

The overhead trade-off problem for maximizing the achievable rate was formally proposed

in [2] and the allocation of power and bandwidth resources problem was formulated within

this framework. In this work it was shown that any rate improvements made with an increase

of transmit and receive antennas or IRS elements are quickly offset by the reduction in data

transmission time due to the extended length of time needed for channel estimation and

feedback transmission. From this observation, it was postulated that the optimal operating
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regime of an IRS system in terms of maximizing achievable data rate contains only one

transmit and one receive antenna to minimize the number of transmitter-to-IRS and IRS-to-

receiver channels to be estimated, and therefore the overhead. However, this is motivated by

the overwhelming cost of complexity per IRS element. Now, if there was a way to reduce the

cost of overhead per IRS element then there is more room for increased rate performance by

utilizing a larger number of transmit antennas. In an attempt to mitigate this issue, several

works including [25] and [26] attempt to model the optimized phase shifts as discrete and

thus save on feedback overhead when transmitting the bits to the IRS controller.

Since the overhead is directly proportional to the number of channels to be estimated

and the length of feedback transmission [2], another attempt to mitigate overhead introduced

in [4] is to group nearby elements into rectangular sub-surfaces and only implement one phase

shift per group. This reduces channel estimation by assuming one channel represents every

element in a group and reduces feedback transmission by the number of phase shifts sent to

the IRS controller. This scheme works to reduce the total overhead proportionally to the

size of a group. In order to implement this effectively, the assumption is made that nearby

elements have highly correlated channels, which allows each group of elements to share one

phase shift. By optimizing the phase shift for each group, it was shown in [4] that this

method achieves desirable achievable rate performance by significantly reducing overhead.

The grouping method proposed in [4] has been built upon by other works such as [27] and [25]

as an important way to reduce overhead. Along with this grouping method, [4] also presents

the conclusion that for any IRS element grouping scheme, there exists an optimal grouping

ratio (number of groups to number of IRS elements) that achieves the best trade-off between

overhead reduction and effective SNR.

The previously proposed method for grouping shows the existence of an ideal grouping

ratio, however, this ideal grouping is an averaged trend over many channel realizations. They

utilize this trend by selecting a rule-of-thumb 2×2 size sub-surface to use for all simulations.

While this choice of grouping increases achievable rate performance, the grouping chosen

4



is fixed and must be estimated before transmission. In fact, their method would require

CSI before channel estimation to determine the ideal grouping at each channel realization.

This requirement invalidates the benefit of the method in the first place, reduced channel

estimation overhead. Therefore, implementation of the ideal grouping at every channel

realization in their scheme is impractical. Because of the existence of this ideal grouping,

there is currently untapped potential in IRS grouping schemes. This thesis will target this

untapped potential by formulating a novel grouping scheme.

1.3 Overview of Methodology and Contributions

The methodologies and solutions of this paper are summarized as follows:

First, we formulate a narrowband transmission model for an IRS-aided system. Then we

formulate an optimization problem to maximize effective SNR by optimizing IRS reflection

coefficients. We then propose a scheme that utilizes IRS element sub-surface grouping that

can achieve the ideal number of groups for each channel matrix. We leverage this knowledge

to achieve the peak trade-off of achievable rate performance and overhead cost. This grouping

scheme requires optimized phase shifts to maximize the effective SNR problem and reach our

formulated upper bound. Therefore we develop three unique methods that each formulate a

grouping strategy, and within the grouping framework, design the IRS reflection coefficients

to improve effective SNR to target this upper bound.

The first two methods we develop for IRS reflection coefficient design build on our pro-

posed scheme and take advantage of the combined IRS channel to improve effective SNR. One

is explicitly solved while the other is a product of an alternating maximization algorithm.

Next, we develop the third method that consists of an algorithm designed to sub-optimally

allocate all IRS elements into groups efficiently and dynamically in order to approach the

upper bound for effective SNR performance considering grouping. By relocating the ele-

ments fluidly from one group to another according to our formulated metric, we are able to

greatly improve upon phase shift coherence within one group. In addition, we create another

5



algorithm that initializes the dynamic grouping algorithm, helps its convergence behavior,

and shrinks the gap between the achieved effective SNR and its upper bound.

The following are the contributions for this thesis:

• Where the IRS element grouping technique introduced in [4] requires structured, rule-

of-thumb grouping, we propose an alternate scheme that can take advantage of the

ideal number of groups for each channel matrix, as well as designing the grouping for

each individual IRS element in a way that improves effective SNR. Simulations show

the performance of our methods greatly outperforms previous methods in terms of

effective SNR and maximum achievable rate.

• Previous grouping methods [4] (other references) still have a theoretical ideal grouping

ratio (IGR) of groups divided by IRS elements even though they cannot attain it. Our

simulations show the convergence of the IGR and the ideal number of groups as the

number of IRS elements increases for our methods as well as the reference method

in [4].

• In previous works such as [2], it is asserted that overhead is an overwhelming cost

for IRS implementation and thus IRSs are limited to SISO applications. However,

our methods use variable-sized grouping to handle the trade-off between overhead and

effective SNR gain with a focus on improving the achievable rate. Our simulations

show that the proposed dynamic grouping method holds great potential to largely

mitigate the high overhead associated with implementing IRS technology in massive

MIMO systems.

1.4 Organization

The remaining chapters of this thesis are organized as follows. In Chapter 2 we establish

the system and channel models. Chapter 3 introduces the concept of grouping as well as

explaining what makes our proposed method unique. Chapter 3 provides the beginning of
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our problem formulation for this thesis, as well as introducing the concept of IRS element

grouping by discussing the scheme presented in a previous work. We then propose our own

grouping scheme and explain why it is superior. In Chapter 4 we introduce the first of our

three grouping methods, uniform phase grouping. In Chapter 5, the second grouping method,

double phase grouping, is formulated and an algorithm is designed to improve effective SNR

performance. In Chapter 6 our third and superior method, dynamic grouping, is proposed

and our complex optimization problem is sub-optimally solved using a combination of two

algorithms. Chapter 7 is our simulation chapter, with results and analysis. Finally, Chapter

8 is the location of our conclusions and proposals for future work.

1.5 Notations

The following notation is used in this thesis: A bold upper case A represents a matrix, a

bold lower case a represents a vector, and a lower case a represents a scalar. If am,n is an

element of matrix A, then the subscripts m and n designate the m-th row and the n-th

column of A, respectively. If bi is an element of the vector b then the subscript i indicates

that bi is the i-th element of b. The matrix IM is the M ×M identity matrix, the vector

em is the m-th column of IM , and 1z,0Z are the all-ones column vector with length Z and

the all-zeros column vector with length Z, respectively. In this work we use ∥A∥1, ∥A∥2,

AT, A∗, AH, and λ1 (A) to describe the 1-norm, 2-norm, transpose, conjugate, Hermitian

(conjugate transpose), and the largest eigenvalue of A respectively. The superscript A⋆ is

saved for a solution to an optimization problem. We also use the ⊗ and ⊙ which describe

the Kronecker Product and Khatri-Rao product respectively. For the definition of Kronecker

Product see Appendix A and for the definition of the Khatri-Rao product, see Appendix B.

CN (0, 1) is complex Gaussian noise with mean 0 and variance 1. The operator diag (a) for a

vector a of length M is defined as [e1 ⊗ a1, e2 ⊗ a2, · · · , eM ⊗ aM ], the operator rank(A) is

the rank of matrix A, and the operator divisors(a) represents the set of all factors xi ∈ χ, ∀i

where a
xi

is always an integer. We also use ∠a to find the angle in radians (from −π to π)
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of each element of vector a. The operator
⋃

denotes the union of a set, and \ denotes the

set exclusion operator.
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Chapter 2

System Model and Assumptions

Abstract

In this chapter, we introduce the Narrowband IRS System Model for this work, as well

as defining the channel model and the pilot tone channel estimation method that is

utilized.

2.1 System Model

We consider the single-user multiple-input single-output (MISO) downlink communication

system model depicted in Fig 2.1 in a wireless cellular environment. A base station (BS) with

N antennas transmits a single stream signal to a single antenna user where the direct link is

completely blocked. Therefore, there is no line-of-sight (LOS) channel path and the signal

only arrives at the receiver antenna after reflecting off of objects in the environment. An IRS

with M elements is implemented within close proximity of the user to create a more favorable

reflected channel [1]. Let H = [h1, h2, · · · ,hM ]T ∈ CM×N define the channel from the BS

and the IRS, where hm = [hm,1, hm,2, · · · , hm,N ]T ∈ CN×1 contains the channel coefficients

between the N transmit antennas to the m-th IRS element and let g = [g1, g2, · · · , gM ]T ∈

CM×1 define the reflected channel between the IRS and the user, where each gm is the channel

coefficient from the m-th IRS element to the receiver.

The IRS assists in the communication by inducing a phase shift at each of its M elements,

which are individually implemented by the designated IRS controller. These phase phase

shifts are designed at the BS and fed back to the IRS controller via the separate hF ∈ C

9



Figure 2.1: System model for downlink IRS-reflected channel
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Figure 2.2: Transmission line equivalent circuit model of a single IRS element.

scalar limited-rate feedback channel. Because the IRS is completely passive, unlike a relay,

it has no active receiving or transmitting capabilities and relies on the bF feedback bits to

implement the phase shift value applied at each element, M in total. These phase shifts

direct the reflected signal paths towards the receiver and create a focused beampattern [1].

Essentially, an IRS can be imagined as a sort of analog beamformer in the middle of a

channel, one that beamforms the signal but leaves the power unchanged.

The elements of an IRS are equally and tightly spaced on a 2-dimensional plane and

constructed using a printed circuit board (PCB). Each element is composed of a metal

patch on the top layer of the PCB dielectric substrate and a full metal sheet on the bottom

layer [28]. In addition, a semiconductor device, which varies the impedance of the IRS

element by controlling its biasing voltage, is embedded into the top layer metal patch so

that the element response can be dynamically tuned in real time without needing to alter its

geometric parameters [28]. The equivalent circuit model for each IRS element m is shown

in Fig. 2.2.

The impedance of each element is varied by the semiconductor device according to the

following equation:
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Zm (Cm, Rm) =
jωL1

(
jωL2 +

1
jωCm

+Rm

)
jωL1 +

(
jωL2 +

1
jωCm

+Rm

) , (2.1)

where L1, L2, Cm, Rm, and ω denote the bottom layer inductance, top layer inductance,

effective capacitance, effective resistance, and angular frequency of the incident signal, re-

spectively. The reflection coefficient of each IRS element ϕm is a fraction of the impedance

discontinuity between the element impedance in (2.1) and the free space impedance Z0 as

given in

ϕm =
Zm (Cm, Rm)− Z0

Zm (Cm, Rm) + Z0

.

To simplify calculations in this thesis, instead of representing the reflection coefficient as

a function of capacitance and resistance, we simply consider it as a function of an amplitude

βm ∈ [0, 1] and a phase shift θm ∈ [0, 2π) of the form ϕm = βme
jθm , where |ϕm| ≤ 1, ∀m.

In practice, the phase shift θm is sent through a feedback channel from the transmitter

to the IRS, and is therefore limited in its precision by the number of bits dedicated to

its transmission. The value of the phase shift is chosen from 2bF different phase values

in [0, 2π), where bF is the number of bits designated for phase shift selection. Therefore

θm ∈ {0,∆θ, . . . , (2bF − 1)∆θ}, where ∆θ = 2π/2bF . As in previous works, we assume

continuous values of θm for our optimization and use a large enough value of bF to therefore

assume that the negative effects of discretization are negligible [28]. For example, with

bF = 16 the set of discreet phase shifts available for selection would contain 216 = 65536

possible values, for a precision of ∆θ = 3π × 10−5. We also assume that βm ∈ {0, 1} which

is to say that the IRS has the ability to either fully reflect or fully absorb, as those are the

only two states needed in this work. We use βm = 1 for data transmission by assuming no

attenuation due to the resistance of IRS elements and βm = 0 to aid in ON/OFF channel

estimation techniques [4].
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2.2 Transmission Model

The input-output channel model of this system can be given by

y = sqHvϕ + w, (2.2)

where s is the transmit symbol satisfying the power constraint E [|s|2] ≤ p, q ∈ CN×1 is

our unit-norm (∥q∥2 = 1) transmit beamforming vector and w ∼ CN (0, 1). Here we use the

vector vϕ to represent the effective channel from the BS to the user. We can then say that

the effective combined scalar channel from the n-th transmit antenna to the user is given by

vn =
M∑
m=1

hmngmϕm = [h1ng1, h2ng2, · · · , hMngM ]ϕ,

where ϕ = [ϕ1 · · ·ϕM ]T ∈ CM×1. Collecting all of vn, 1 ≤ n ≤ N into a vector vϕ ∈ CN×1

gives

vϕ = [h1 ⊗ g1,h2 ⊗ g2, · · · ,hM ⊗ gM ]ϕ (2.3)

=
(
HT ⊙ gT

)
ϕ (2.4)

= vec
(
gTΦH

)
, (2.5)

where Φ = diag(ϕ) and the equality in (2.5) follows from the identity vec(A diag (d)B) =(
BT ⊙A

)
d. Focusing on the composite model in (2.4), one can rewrite the combined channel

vector as

vϕ = Vrϕ,

where we say the H and g combined channel is defined as Vr = [vr,1,vr,2, · · · ,vr,M ] =(
HT ⊙ gT

)
∈ CN×M and vr,m = hm ⊗ gm. The effective channel input-output model is thus
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given by

y = sqHVrϕ+ w. (2.6)

2.3 Pilot Tone Transmission and Channel Estimation

The transmission model in (2.6) gives context to how the IRS phase shifts are applied to the

transmitted signal, and it also allows for a channel estimation technique to be created for

our system model, which we derive in this chapter.

We use an IRS element on/off (ϕON = 1 or ϕOFF = 0) scheme [4] to determine each chan-

nel vector vr,m of Vr. By turning on only the m-th meta-atom and setting its reflection

coefficient to 1 (i.e. ϕ = em) the received signal is of the form

y = fHvr,m + w,

where f ∈ CN×1 is a pilot vector. To estimate vr,m ∈ CN×1 with this technique, it follows

that the transmitter sends a sequence of pilot vectors F = [f1 · · · fT ] ∈ CN×T that is known to

the receiver such that FFH = IT . This orthogonality principle helps to simplify our solution.

Then, the sounded signal after T channel uses is

ym = FHvr,m +wm.

We use the least squares (LS) channel estimation method as a practical case for our system

model. The LS estimate for vr,m is given by

v̂r,m =
(
FFH

)−1
Fym = Fym,

where the last equality is due to the fact that FFH = IT . Now, repeating the channel
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sounding for each column of Vr, its composite received signal is equivalently written as

Y = FHVr +W,

where Y = [y1 · · ·yM ] ∈ CT×M and W = [w1 · · ·wM ] ∈ CT×M . Thus, its LS estimate is

V̂r = FY.

To produce an accurate estimate, this method requires at least N pilot tones (N ≤ T )

to estimate the channel, and that the time needed is proportional to the number of IRS

elements in

T0 (NM + 1) , (2.7)

where T0 is the time required to send one pilot tone, and the extra “ + 1” is from the pilot

tone needed to estimate the BS to IRS feedback channel shown in Fig. 2.1. In this system

model, we also set aside a designated frequency band for robust and accurate feedback

communication.

2.4 Channel Model

We follow a geometric channel model in this thesis. We assume the case where the IRS

has a direct LOS path to the BS and to the user, because this has been observed to be

the best scenario for IRS aided communication to improve performance [23]. We consider

a quasi-static block fading channel model so that within one fading block the channels stay

approximately constant. The channel parameters were adapted from [4] and can be found in

Chapter 7.1. It is also important to note that the transmit antenna array elements are evenly

spaced half of a wavelength apart in two dimensions to take the form of a standard uniform

rectangular array (URA). In some previous works [29], the IRS was structured similar to an

15



antenna array, where each element is spaced half of a wavelength apart
(
dBS = λ

2

)
, however,

in practical IRSs the elements are packed much closer together [4]. In this thesis, we define

dIRS = λ
8
.

The appropriate geometric channel between the BS and the IRS can be represented as

H = ARDAH
T, (2.8)

where the subscripts R and T refer to the receiver-end of the channel and transmit-end of

the channel, respectively. The matrices AR and AT are defined as

AR = [aR (φR,1, ψR,1) , . . . , aR (φR,Nch
, ψR,Nch

)] ∈ CM×Nch , (2.9)

AT = [aT (φT,1, ψT,1) , . . . , aT (φT,Nch
, ψT,Nch

)] ∈ CN×Nch , (2.10)

where φ and ψ are the elevation and azimuth angles, respectively and Nch is the number

of channel paths. The subscripts of φ and ψ, R and T , describe the angles of arrival and

departure, respectively. The array response of an array element consists of an incremental

phase shift (in the frequency domain) caused by a shift in the spatial domain defined by the

reference plane in Fig. 2.3. This variable phase shift is of the form ejθw , where θw is the

phase offset output from the function w (x, y, φ, ψ). This function is designed based on a

URA aligned in the y-z plane as seen in Fig. 2.3 and changes in accordance with the selected

array element and the associated angle pair [4]. The receive-end and transmit-end array

response vectors are

aR (φ, ψ) =
[
ejwR(1,1,φ,ψ), . . . , ejwR(mx,my ,φ,ψ), . . . , ejw(Mx,My ,φ,ψ)

]T ∈ CM×1, (2.11)

aT (φ, ψ) =
[
ejwT(1,1,φ,ψ), . . . , ejwT(nx,ny ,φ,ψ), . . . , ejwT(Nx,Ny ,φ,ψ)

]T ∈ CN×1, (2.12)

where Mx and My are the width and height dimensions of the IRS URA (M =Mx ×My)

and Nx and Ny are the width and height dimensions of the URA at the BS (N = Nx ×Ny).
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Figure 2.3: The URA response vector is defined for arrays oriented in the y-z plane, which
is illustrated here. The distance between elements d, the elevation angle φ ∈ [0, π], and the
azimuth angle ψ ∈ [−π, π] are also shown.

The value of the phase offset function w is calculated with one of the following equations:

wR (x, y, φ, ψ) =
2π

λ
dIRS ((x− 1) sinφ sinψ + (y − 1) cosφ) , (2.13)

wT (x, y, φ, ψ) =
2π

λ
dBS ((x− 1) sinφ sinψ + (y − 1) cosφ) . (2.14)

These array response values are based on the elevation and azimuth angle of the channel

path and also the number of spatial shifts by separation distance d from the antenna (or

IRS element) placed in the origin of the reference plane, shown in Fig. 2.3. In the channel

equation (2.8) the matrix D is represented by

D = diag ([α1, α2, α3, . . . , αNch
]) ∈ CNch×Nch , (2.15)

where α is the complex circularly symmetric Gaussian path gain for each channel path.

The channel vector g in (2.4) is similarly defined as H above but takes the following
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form:

g = dT
g A

H
g , (2.16)

where

dg = [αg,1, αg,2, αg,3, . . . , αg,Nch
]T ∈ CNch×1, (2.17)

and Ag ∈ CM×Nch is constructed as the transmit array response matrix as in (2.10) above,

but describes the array response in the model where the IRS is the “transmit-side” and the

user is the receive-side:

Ag = [ag (φg,1, ψg,1) , . . . , ag (φg,Nch
, ψg,Nch

)] ∈ CM×Nch , (2.18)

and the array response vector for the g channel is defined as in (2.11) where

ag (φ, ψ) =
[
ejwg(1,1,φ,ψ), . . . , ejwg(mx,my ,φ,ψ), . . . , ejwg(Mx,My ,φ,ψ)

]T ∈ CM×1, (2.19)

and finally the phase offset function is defined as:

wg (x, y, φ, ψ) =
2π

λ
dIRS ((x− 1) sinφ sinψ + (y − 1) cosφ) . (2.20)

The azimuth angles of arrival and departure for both channels H and g are taken from

the uniform distribution [−180◦, 180◦], and the elevation angles of arrival and departure are

taken from the uniform distribution [−90◦, 90◦] . Note for the channel g, the angles of arrival

are irrelevant due to the single antenna nature of the user.

An accurate and detailed channel model is important to properly simulate and test the

practical impact that our methods have on the performance of this transmission model. We

see in the next chapter that IRS phase shifts are directly optimized and grouped based on
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the information gathered from the channel and the coherence between elements. Therefore

the mathematical relationships between elements set in the channel model must be accurate

for grouping to have a proper effect.
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Chapter 3

Preliminary Problem Formulation and Grouping

Abstract

In this chapter we start by establishing the upper bound for the effective SNR that

is pursued by our optimization methods, as well as constructing the overhead-aware

achievable rate equation that this work attempts to maximize. Next, we reference the

grouping scheme used in a previous work to combat overhead, and point out its room

for improvement in terms of efficient grouping. Then we propose an alternate scheme

with the capacity for designing the ideal number of groups.

3.1 Preliminary Problem Formulation

The target of this work is to maximize the effective SNR by optimizing the phase shift values

of the IRS elements, which brings us to the optimization problem:

max
q,ϕ

∣∣qHVrϕ
∣∣2 (3.1a)

s.t. ∥q∥2 = 1 and |ϕm| ≤ 1, ∀m. (3.1b)

It follows logically that the constraint on ϕ could be set to equality without affecting opti-

mality, henceforth in this work the constraints in (3.1b), both are set to equality, yielding
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an equivalent problem

max
q,ϕ

∣∣qHVrϕ
∣∣2 (3.2a)

s.t. ∥q∥2 = 1 and |ϕm| = 1, ∀m. (3.2b)

Using previously formulated optimization techniques such as [2] and [30], the problem in

(3.2) can be simplified. First, we define the singular value decomposition of the combined

channel matrix as

Vr =

γr∑
i=1

λi (Vr)uir
H
i ,

where γr = rank (Vr), ui ∈ CN×1 is the i-th largest left singular vector, and ri ∈ CM×1 is

the i-th largest right singular vector. Now, utilizing optimal beamforming techniques, the

objective in (3.2) can be upper bounded by

∣∣qHVrϕ
∣∣2 ≤ λ21 (Vr)

∣∣rH1 ϕ∣∣2 , (3.3)

where the equality holds when q is set as the largest left singular vector of Vr. Therefore,

we have

q⋆ = u1. (3.4)

Now (3.3) can be further upper bounded as

λ21 (Vr)
∣∣rH1 ϕ∣∣2 ≤ λ21 (Vr) ∥r1∥21 , (3.5)

where equality is achieved when

ϕ⋆ = ej∠r1 . (3.6)
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Figure 3.1: Model of total frame time showing its composition of overhead and data trans-
mission.

This solution is similar to the equal gain transmission solution as formulated in [30], thus

we will refer to our solution as the equal gain reflection (EGR) solution. Thus, in (3.5), we

have shown the achievable upper bound to effective SNR in the given system model, utilizing

two established solution techniques. However, this SNR cannot be fully taken advantage of

because of the trade-off that exists when dealing with the overhead required to implement

ϕ⋆ at the IRS. There exists a greater channel estimation and feedback cost that contribute

to the overhead, which leads to an overall smaller achievable data rate, which is the main

measure we use to gauge performance of our signal model. The overhead-aware achievable

rate that is used is defined as:

R =

(
1− Tov

Ttot

)
Blog2

(
1 +

p
∣∣qHVrϕ

∣∣2
BN0

)
, (3.7)

where Ttot is the total frame time, Tov is the time required for overhead, B is the bandwidth,

p is the transmit power of the signal, and N0 is the noise power spectral density. As Tov has

a large impact on the overall achievable rate, it is just as important to keep Tov low as it

is to maximize the effective SNR in this function. The two overhead terms that make up

Tov = TF + TE are the time required for feedback and time required for channel estimation,

respectively, as made clear in Fig. 3.1. As we noted in Chapter 2.3, TE = (NM + 1)T0, and
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the value of TF is

TF =
MbF

BFlog2

(
1 + pF|hF|2

N0BF

) , (3.8)

where BF and pF are the bandwidth reserved for reliable feedback and power dedicated to

feedback transmission, respectively. Therefore the expanded overhead-aware achievable rate

equation is

R =

1− (NM + 1)T0
Ttot

− MbF

TtotBFlog2

(
1 + pF|hF|2

N0BF

)
Blog2

(
1 +

p
∣∣qHVrϕ

∣∣2
BN0

)
. (3.9)

Due to the multiplicative effects of overhead costs, [2] had a pessimistic view on the po-

tency of IRS aided systems, even so far as asserting that IRSs were not effective in increasing

the achievable rate in any system with larger than one transmit antenna and one receive an-

tenna when implementing a fully optimized ϕ⋆ solution as in (3.6). This thesis attempts

to identify the sub-optimal trade-off between effective SNR gain and overhead reduction to

achieve superior rate performance.

3.2 Existing Grouping Method

To combat this overhead trade-off issue, [4] introduced a method that significantly reduced

overhead without much SNR loss. The concept was to take advantage of an IRSs closely

packed elements and the assumption that nearby elements are highly correlated. Instead of

assigning an optimized reflection coefficient to every IRS element, they proposed that nearby

elements were combined into one of K evenly sized groups that could share one reflection

coefficient, optimized for the group. This method attained a net achievable rate increase due

to marginal effective SNR loss with a much smaller overhead cost than without grouping.

They accomplished these improvements by not only reducing the number of bit groups

required for feedback, but also reducing the size of the channel matrix Vr that needs to be

estimated, as each grouped shared an estimated channel. This causes the values of M in the
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overhead term of (3.9) to be reduced to K. Instead of estimating Vr = [vr,1,vr,2, · · ·vr,M ],

only some channel vectors needed to be estimated in [4], i.e. Ṽr =
[
vr,1,vr,Z , · · ·vr,Z(K−1)

]
where Z = M

K
is the number of elements per group, with the important constraint that Z is

an integer. Once the channel matrix Ṽr is estimated, the optimization problem is given by

max
q̃,ϕ̃

∣∣∣q̃HṼrϕ̃
∣∣∣2 (3.10a)

s.t. ∥q̃∥2 = 1 and
∣∣∣ϕ̃k∣∣∣ = 1, ∀k, (3.10b)

where q̃ ∈ CN×1 and ϕ̃ ∈ CK×1 can be shown to be solved by the same solution method

as in (3.4) and (3.6), where the sub-sampled channel matrix Ṽr is used to optimize the

beamforming and reflection coefficient vectors. Then these solution vectors are applied to

the actual combined channel matrix Vr which gives the output effective SNR. This achieves

a much higher achievable rate than without grouping (due to the large reduction in overhead

costs), but there is a significant reduction in effective SNR due to q̃ not being optimal for

the full dimensional channel matrix and the obvious reduction in effective SNR due to the

effects of grouping and the loss of degrees of optimization freedom.

Another aspect of their grouping strategy that allows for improvement is the choice of

best grouping ratio ρ = K
M

. As shown in [4] there exists an ideal grouping ratio (IGR) where

the trade-off between achievable effective SNR gain and overhead is properly handled to

improve achievable rate. Unfortunately, because a grouping ratio would need to be chosen

before channel estimation takes place, there is no way to determine the IGR without the

channel state information (CSI) corresponding to the full dimensional channel matrix prior

to channel estimation. Therefore the IGR is unattainable in practice. Instead, a rule-of-

thumb ρ = 1
4

was suggested in [4] to achieve some benefits of grouping [4]. This inspired the

creation of our proposed strategy, which is able to determine the ideal grouping ratio ρ⋆ at

every channel realization.
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3.3 Proposed Grouping Scheme - General Principles

Our proposed grouping scheme takes advantage of the IGR by utilizing the entire Vr channel

matrix at every channel realization, thereby having the information present to implement the

ideal grouping. In order to have access this information, it is assumed that the entire channel

must be estimated, which means our grouping does not reduce TE, but it still can considerably

reduce TF by sending phase shift information with designated groupings, reducing TF by a

factor of ρ⋆ and keeping overhead as low as possible. We postulate that with the given

overhead-aware model, any marginal overhead cost increase over the grouping method in [4]

is more than made up for by the effective SNR gain related to our proposed reflection

coefficient optimization methods within each grouping strategy. Another incidental way to

increase effective SNR in our solution is by optimizing the beamforming vector according

to (3.4). Because we have more information in our full channel Vr we can beamform more

accurately. With this q⋆ solution assumed in all of our proposed methods, we can attempt

to achieve the upper bound in (3.5) with our ϕ⋆ solutions, constrained of course by the

grouping of the IRS elements. In the following chapters we propose 3 unique methods that

offer sub-optimal solutions to replace ϕ⋆ vector, leveraging the information contained in the

full channel matrix.
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Chapter 4

Method 1 – Uniform Phase Grouping

Abstract

In this chapter, we take the first step in implementing the proposed grouping scheme

from the previous chapter and formulate it as an effective SNR maximization problem.

We also develop our first, and simplest of the three grouped reflection coefficient design

methods.

4.1 Grouped Phase Optimization

The goal of this optimization method is to find ϕ⋆ that maximizes (3.2), but we are limited

by the number of reflection coefficients K that are available to be optimized. To account for

the reduction in optimization freedom, we adjust the constraint into our model and define

ϕ =
(
ϕ̃⊗ 1Z

)
, (4.1)

where ϕ̃ ∈ CK×1 is the vector containing the reflection coefficients for each group k, and

1Z is the length Z vector containing all ones that acts to uniformly distribute ϕ̃k to each

element in the group. The effective implemented reflection coefficients considering grouping

are shown on the example IRS in Fig. 4.1.

In order to formulate the maximization problem to optimize ϕ̃ we must first adapt the
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Figure 4.1: Example of the Method 1 grouping implementation on 6x6 IRS Array with group
size K = 9 and elements per group Z = 4.

problem from (3.1), using our new definition of ϕ in (4.1):

max
q,ϕ̃

∣∣∣qHVr

(
ϕ̃⊗ 1Z

)∣∣∣2 (4.2a)

s.t. ∥q∥2 = 1 and
∣∣∣ϕ̃k∣∣∣ = 1, ∀k. (4.2b)

We see in (4.2a) that the optimization of q⋆ does not depend on ϕ̃
⋆

and is thus the same as

(3.4). Therefore our focused effective SNR maximization problem is reduced to

max
ϕ̃

∣∣∣rH1 (ϕ̃⊗ 1Z
)∣∣∣2 (4.3a)

s.t.
∣∣∣ϕ̃k∣∣∣ = 1, ∀k. (4.3b)

This problem can be expanded to better understand the effect of each individual ϕ̃k as
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follows:

max
ϕ̃

∣∣∣∣∣ϕ̃1

Z∑
i=1

r∗i + ϕ̃2

Z∑
i=1

r∗i+Z + · · ·+ ϕ̃K

Z∑
i=1

r∗i+(K−1)Z

∣∣∣∣∣ (4.4a)

s.t.
∣∣∣ϕ̃k∣∣∣ = 1, ∀k. (4.4b)

This maximization problem can be simplified as the product of two vectors

max
ϕ̃

∣∣∣r̃HM1ϕ̃
∣∣∣2 (4.5a)

s.t.
∣∣∣ϕ̃k∣∣∣ = 1, ∀k, (4.5b)

where our Method 1 grouped r1 vector is defined as

r̃M1 =

[
Z∑
i=1

ri,
Z∑
i=1

ri+Z , · · · ,
Z∑
i=1

ri+(K−1)Z

]T
∈ CK×1. (4.6)

From (4.5a) it is now clear that we can still use our EGR solution in (3.6), except where

the phases of ϕ̃k match the sums of the grouped elements of the r1 vector as seen in

ϕ̃⋆k = ej∠(
∑Z

i=1 ri+(k−1)Z), ∀k. (4.7)

This optimal solution to (4.3a) now achieves the effective SNR upper bound of

∣∣∣qHVr

(
ϕ̃⊗ 1Z

)∣∣∣2 ≤ λ21 (Vr) ∥r̃M1∥21 . (4.8)

This upper bound varies with the chosen grouping ratio which further motivates the impor-

tance of utilizing the IGR for these methods. We expect the upper bound to monotonically

increase as ρ increases (where the upper bound is largest when there is no grouping, i.e.

the upper bound in (3.5)), but in Chapter 4.2 we see that when considering overhead, there

exists a trade-off for ρ in the achievable rate.
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4.2 Rate Equation and Overhead Effects

To conclude this chapter, we model the feedback overhead that was reduced and formulate

a modified achievable rate equation. Because grouping reduces the number of distinct phase

shifts that need to be sent over the feedback channel, the bits required by the IRS controller

are reduced as well, from MbF bits to only MρbF bits. With all of the above considered, the

modified achievable rate equation is defined as

1− (NM + 1)T0
Ttot

− MρbF

TtotBFlog2

(
1 + pF|hF|2

N0BF

)
Blog2

1 +
p
∣∣∣qHVr

(
ϕ̃⊗ 1Z

)∣∣∣2
BN0

 . (4.9)

This grouping method along with ϕ̃ optimization successfully improves effective SNR

while also reducing TF, which increases the overall achievable rate which we can see in

Chapter 7.
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Chapter 5

Method 2 – Double Phase Grouping

Abstract

In this chapter, we present our second method for generating effective SNR gain by

leveraging a second, smaller phase shift kernel alongside ϕ̃ that we introduce as ε.

We formulate and show that an alternating maximization algorithm can be used to

sub-optimally solve this problem.

5.1 Formulation: Method 2

From (4.2a) in our formulation of Method 1, we assume that the IRS reflection coefficients are

exactly repeated for each element in the group. In grouping Method 2, we propose a strategy

that increases the degrees of freedom for optimization by introducing a new kernel, ε ∈ CZ×1

that replaces the 1Z vector in (4.2a) but contains phases just like ϕ̃. Due to the amplitude’s

invariance to phase rotation, these two vectors can be implemented simultaneously through

the Kronecker product. Therefore our |ϕm| = 1,∀m constraint remains unbroken. Now each

IRS element has a reflection coefficient that is a product of two separate phases, as shown

in Fig. 5.1. Once again, this optimization strategy utilizes the full channel Vr, so we again

use q⋆ in (3.4) and can set up our new effective SNR maximization problem as

max
ϕ̃,ε

∣∣∣rH1 (ϕ̃⊗ ε
)∣∣∣2 (5.1a)

s.t.
∣∣∣ϕ̃k∣∣∣ = 1 and |εz| = 1, ∀k, z. (5.1b)
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Figure 5.1: Example of Method 2 grouping implementation on 6x6 IRS Array with
group number K = 9, and elements per group Z = 4.

Unfortunately the problem in (5.2a) is not directly solvable, as the solution for ϕ̃ depends

on ε and vice versa. However, we can form two optimally solvable sub-problems, one where

ε is given and the maximization problem is optimally solved for ϕ̃ and one where ϕ̃ is given

and is optimally solved for ε. Similarly to (4.4a), the maximization problem in (5.1a), can

first be expanded to

max
ϕ̃

∣∣∣∣∣ϕ̃1

Z∑
z=1

εzr
∗
z + ϕ̃2

Z∑
z=1

εzr
∗
z+Z + · · ·+ ϕ̃K

Z∑
z=1

εzr
∗
z+(K−1)Z

∣∣∣∣∣
2

(5.2a)

s.t.
∣∣∣ϕ̃k∣∣∣ = 1, ∀k, (5.2b)

where ε is fixed. To solve this problem for ϕ̃, we have a straightforward optimal EGR

solution when ε is fixed:

ϕ̃⋆k = ej∠(
∑Z

z=1 ε
∗
zrz+(k−1)Z), ∀k. (5.3)
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We can also reformulate (5.2a) to make the solution for ε⋆ more obvious, as in

max
ε

∣∣∣∣∣ε1
K∑
k=1

ϕ̃kr
∗
1+(k−1)Z + ε2

K∑
k=1

ϕ̃kr
∗
2+(k−1)Z + · · · εZ

K∑
k=1

ϕ̃kr
∗
Z+(k−1)Z

∣∣∣∣∣
2

(5.4a)

s.t. |εz| = 1, ∀z, (5.4b)

where ϕ̃ is fixed. Now it is clear that the EGR solution can be used for ε⋆ as well. When ϕ̃

is fixed we can say

ε⋆z = ej∠(
∑K

k=1 ϕ̃
∗
krz+(k−1)Z), ∀z. (5.5)

5.2 Algorithm

Now that we have demonstrated that we have two sub-problems that can be optimally

solved, we can use alternating optimization as described in Algorithm 1 to converge on a

sub-optimal solution. In our algorithm, a random initial phase vector ε0 is used to find the

first optimal ϕ̃ according to the solution in (5.3). Then the output vector ϕ̃
⋆

is used as

an input to the solution in (5.5) to find the optimal ε. This output vector ε⋆ can then be

used as an input to (5.3) again, and thus begins the process of repeating this optimization.

Since both functions are optimally solvable, the process of effective SNR gain improvement

is monotonically increasing every iteration until significant convergence, as seen in Fig. 5.2.

Algorithm 1 Method 2 Alternating Optimization
Input: r1, K,M, ε = ε0
Output: ϕ̃

⋆
, ε⋆

iteration = 0
repeat

iteration = iteration +1
Fix ε and maximize effective SNR with ϕ̃ according to (5.3)
Fix ϕ̃ and maximize effective SNR with ε according to (5.5)

until Convergence:
∣∣∣rH1 (ϕ̃⊗ ε

)∣∣∣2
(iteration)

−
∣∣∣rH1 (ϕ̃⊗ ε

)∣∣∣2
(iteration−1)

≤ 10−7

ϕ̃
⋆
= ϕ̃, ε⋆ = ε.
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While in Method 1 we derived a strict upper bound for the effective SNR, for this method

we cannot derive an explicit upper bound solution for Algorithm 1, we only have the conver-

gence point which is shown in Fig. 5.2. We set convergence when the difference in effective

SNR from one iteration to the next is less than 10−7. Note that the loose upper bound in

(3.5) still applies for all of our proposed methods.

5.3 Rate Equation and Overhead Effects

Since this grouping method requires that an additional Z phases are sent over the feedback

channel, corresponding to the length Z kernel ε, the TF in the overhead model increases by

ZbF bits. Thus the feedback overhead term for Method 2 is defined as

TF =
(Mρ+ Z) bF

BFlog2

(
1 + pF|hF|2

N0BF

) (5.6)

The total overhead of this method increases over Method 1. However, any costs from in-

creased overhead were overcome by significant effective SNR gain improvements with our

alternating optimization. With given ρ our achievable rate equation for Method 2 is given

by:

1− (NM + 1)T0
Ttot

− (K + Z) bF

TtotBFlog2

(
1 + pF|hF|2

N0BF

)
Blog2

1 +
p
∣∣∣qHVr

(
ϕ̃
⋆ ⊗ ε⋆

)∣∣∣2
BN0

 . (5.7)

Remark 1 Even though the model and Fig. 5.1 show examples where Z ≤ K, it is still

possible for ε to contain more elements than ϕ̃. In this case, there are more meta-atoms per

group than there are groups in the IRS. Because the sizes of ϕ̃ and ε, K and Z respectively,

are complementary around the point K = Z (for any set of values of K and Z there exists

another set where K and Z are swapped), these vectors can be considered interchangeable in

terms of which describes the number of groups and which describes the size of the groups.
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Figure 5.2: Effective SNR performance and convergence of Method 2 algorithm with respect
to number of iterations. K = 6,M = 36. Here we execute the algorithm for a single channel
realization according to the channel model in Chapter 2.4.
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Because ϕ̃ and ε are interchangeable, it would be logical to assume that the effective SNR

would be the same no matter the order of optimization. Furthermore, the numerator of the

overhead term TF in (5.7) does not change if the values of K and Z are swapped. This

means that the overhead for Method 2’s achievable rate equation is symmetrical (and convex

parabolic) in nature about the center point Z = K or ρ = 1/
√
M (if this point exists).

Method 2 was formulated to highlight the relative improvements in effective SNR over

Method 1 that can be achieved in our scheme when additional room for flexible grouping

is created. In the following chapter we attempt to advance this idea to its limits and open

up a substantial amount of room for flexible grouping design by relaxing two important

assumptions, that groups are made up of nearby IRS elements and that groups must be

equally sized.
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Chapter 6

Method 3 – Dynamic Grouping and Phase Optimization

Abstract

In this chapter, we present our third method for generating improved effective SNR

gain which proposes a new generalized framework that allows for dynamically-sized and

distributed groups. A rate-improving algorithm is developed to efficiently partition the

IRS elements into coherent groups. Another algorithm is introduced that initializes the

first, and improves both effective SNR performance and iterations until convergence.

6.1 Problem Formulation

In this chapter, we design a way to free up even more degrees of freedom that allow us to

significantly improve the effective SNR at the cost of a small increase of feedback overhead.

Before this chapter, the assumption was made that all IRS groups were of equal size and

the elements were close together, but we relinquish those assumptions to further increase

effective SNR. This framework is a more general form of the formulation of Method 1, so the

implementation of Method 1 is a special case of Method 3’s general model. The proposed

grouping method is depicted in Fig. 6.1. We see that each element has full freedom of

choice, it can take the phase shift of any group, without consideration of location or group

size. While it is true that element correlation exists within close elements of an IRS [4], by

structuring the groups with dynamic sizes and locations we are allowing the elements to be

partitioned in a way that captures any coherence of optimized phases ϕm. As such, to fit

the model presented in Method 3, we replace Z with Zk as the dynamic number of elements
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Figure 6.1: Example of Method 3 dynamic grouping implementation on 6x6 IRS Array with
dynamic group size and variable number of elements per group.

in the k-th group. Looking back at the formulation for (4.8) and (4.6), we can adjust these

problems to fit our new dynamic group size organization:

max
ϕ̃

∣∣∣r̃HM3ϕ̃
∣∣∣2 (6.1a)

s.t.
∣∣∣ϕ̃k∣∣∣ = 1, ∀k, (6.1b)

where our Method 3 grouped r1 vector is defined

r̃M3 =

[∑
i∈S1

ri,
∑
i∈S2

ri, · · · ,
∑
i∈SK

ri

]T
∈ CK×1, (6.2)

and Sk ⊂ {1, 2, · · · ,M} denotes the set of IRS elements distributed into group k (which are

no longer required to be adjacent to one another) that share one reflection coefficient, and

form one disjoint union within {1, 2, · · · ,M}, i.e.
⋃K
k=1 Sk = {1, 2, · · · ,M}. We can again

find an explicit upper bound, achievable with an EGR solution, as in (4.8) to understand

37



the performance of this strategy:

∣∣qHVrϕM3

∣∣2 ≤ λ21 (Vr) ∥r̃M3∥21 . (6.3)

Our ϕ⋆
M3 solution vector is always designed to match the phases of the elements of the

vector r̃M3, and because we define

∥r̃M3∥1 =
K∑
k=1

∣∣∣∣∣∑
i∈Sk

ri

∣∣∣∣∣ , (6.4)

by maximizing ∥r̃M3∥21 we are essentially finding the best way to combine elements of r1

into K groups (of any size). This optimized grouping maximizes the sum of the magnitudes

of all of the groups, which in turn significantly increases the effective SNR. This grouping

optimization is presented in the following problem:

max
{S1,S2,··· ,SK}

∥r̃M3∥21 (6.5a)

s.t. Zk = |Sk| , ∀k, (6.5b)
K∑
k=1

Zk =M, (6.5c)

K⋃
k=1

Sk = {1, 2, · · · ,M} . (6.5d)

where |Sk| is defined as the cardinality of the set Sk and
⋃K
k=1 Sk is the disjoint union equal

to the set of all m. The maximization problem above prepares the way for Algorithm 2,

which attempts to find near-optimal partitioning for the sets of elements Sk as in (6.5a).

6.2 Method 3 Algorithm

The element allocation problem in (6.5a) is particularly complex. In order to try every

combination of IRS elements and group sizes, the number of different combinations possible
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is given by the Stirling Number of the Second Kind [31]:

Number of Combinations =
1

(K)!

K∑
k=0

(−1)K−k

 K

k

 kM . (6.6)

Because IRSs are expected to contain a massive amount of elements [1], this number of

combinations becomes extremely impractical. For instance, with only 16 IRS elements and

4 groups, the number of possible combinations becomes 1.7 × 108. In current research and

development, there are IRSs that have been created and tested with 1100 elements [23]. Even

if only 4 groups are used for this real-life example, that still means there are an incredibly

large 7.68× 10660 possible combinations [23]. Therefore it is paramount to find an expedited

solution method to achieve the optimal sets {S⋆1 , S⋆2 , · · · , S⋆K}, or sets that perform close to

optimally without an exhaustive search. Our algorithm outputs a near optimal solution, one

that approaches the maximization of (6.5a) iteratively. We established in (6.5a) that our

maximization depends on the magnitude of each group, therefore we use this as our metric

for improving the effective SNR, defining the function f1 as the following function:

f1 (Sk) =

∣∣∣∣∣∑
i∈Sk

r1,i

∣∣∣∣∣ . (6.7)

The proposed algorithm begins by taking in as input the K non-empty initial sets

{S0,1, S0,2, · · · , S0,K} as input to start the optimization. The initial steps of Algorithm 2

are straightforward, as the process consists of checking every IRS element to see if it is bet-

ter to transfer it to another group, or to keep it where it is now. First the group “location” of

the m-th IRS element is found and its previous set Sk is captured as the temporary set Stmp

before any changes are made (Steps 1-10). We then use our function f1 to find the difference,

according to our metric, that removing element m from Stmp would cause. This is set as δ

(Step 11). Then for every group 1 : K (except for group ktmp), the difference in the metric is

measured, with and without the addition of m, which is defined as µk (Steps 12-14). As long
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Algorithm 2 Method 3 Dynamic Grouping
Input: r1, K,M, {S1, S2, · · · , SK} ← {S0,1, S0,2, · · · , S0,K}
Output: {S⋆1 , S⋆2 , · · · , S⋆K}

1: iteration = 1
2: repeat
3: iteration = iteration + 1
4: for m = 1 :M do
5: for k = 1 : K do
6: if m ∈ Sk then
7: Stmp = Sk
8: ktmp = k
9: end if

10: end for
11: δ = f1 (Stmp)− f1 (Stmp\ {m})
12: for k = {1 : K} \ {ktmp} do
13: µk = f1 (Sk ∪ {m})− f1 (Sk)
14: end for
15: if maxµk ≥ δ then
16: kbest = argmaxi µi
17: Skbest ← Skbest ∪ {m}
18: Stmp ← Stmp\ {m}
19: end if
20: end for
21: until Convergence: ∥r̃M3,iteration∥21 −

∥∥r̃M3,(iteration -1)
∥∥2
1
≤ 10−7 {According to (6.4)}

{S⋆1 , S⋆2 , · · · , S⋆K} ← {S1, S2, · · · , SK}
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Figure 6.2: Method 3 toy example problem illustrating the effect of the efficient grouping
of a 2x2 IRS on the sum of group magnitudes metric. On the left hand side is the default
nearby grouping method and the right hand side is the optimal grouping that was output
from Algorithm 2.

as one of the possible group switches out-benefits the cost δ (Step 14), then m is re-assigned

(Steps 16-18). However, if δ is larger than µk,∀k, then m remains in its current group. This

process is repeated for all m and then the set of m = 1 : M is continuously repeated in the

algorithm until we have convergence in our final metric, ∥r̃M3∥21 (Step 21).

6.3 Illustrative Example

We use a toy example of a 2× 2 IRS array, shown in Fig. 6.2 to illustrate the basic concepts

that our algorithm uses to increase effective SNR. By understanding the effects of dynamic

grouping we can apply these principles to a larger scale in Algorithm 2.

In this example, we are given four real values that represent the four r1,m values of the

beamformed and reflected channel. Each element’s r1,m value is listed in its corresponding

element block. Remember, r1 is the largest singular vector of Vr that we use because of the

optimal beamformer multiplication qHVr found in (3.4). These values have both a magnitude

and a direction, negative or positive, that represents a simplified version of complex phase.
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The formulation for our method states that grouping the r1,m values into K groups (in this

case K = 2) according to the metric in (6.5a) gives us exceptional (in this case optimal)

effective SNR. In the default first grouping in Fig. 6.2 labeled “Fixed Grouping Method,”

we assume a set grouping with 2 × 1 element blocks to represent a fixed grouping similar

to [4]. To measure the effective SNR for this method, we find
∑

i∈Sk
r1,iϕ̃k for each group k

and then take the sum of those values. We find the effective SNR of the “Fixed Grouping

Method” in Fig. 6.2 to show the process. Note that in both grouping methods it is apparent

that applying the optimized group phase shifts to each element of the group is equivalent

to taking the magnitude of the sum of each group’s r1,m values, where m ∈ Sk. This is

consistent with complex values and we use this as a simplification in our calculations for

Algorithm 2 instead of calculating out the optimized ϕ̃k every time.

In Fig. 6.2 the “Output Grouping from Algorithm 2” is the designed (in this case optimal)

resultant grouping from utilizing Algorithm 2 with the “Fixed Grouping Method” as input.

To confirm the improved performance of Algorithm 2, we calculate the effective SNR to

compare these methods. As we expect, the effective SNR is maximized in the new grouping,

which we can check by comparing the effective SNR to the upper bound in

∣∣∣∣∣
M∑
m=1

r1,mϕ
⋆
m

∣∣∣∣∣
2

=

∣∣∣∣∣
M∑
m=1

|r1,m|

∣∣∣∣∣
2

= 192.

The steps to change the “Fixed Grouping Method” to the dynamic grouping through

Algorithm 2 are shown in Figs. 6.3 and 6.4. First, we take the fixed grouping as an initial

grouping input to Algorithm 2, shown as [S0,1, S0,2]. We separate the process into 4 separate

steps, for each step selecting one of the elements 1, 2, 3, 4 and evaluate that element for

potential group changes. According to Algorithm 2, if δ < µkother (where in this case kother

denotes the other group that does not contain the selected element), then the selected element

is moved to the other group. The output of Algorithm 2, [S⋆1 , S⋆2 ], is equal to the [S1, S2]

after Step 4 in Fig. 6.4. Note, we achieve convergence after the first iteration (Steps 1-4
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Figure 6.3: Illustrating Algorithm 2 using toy problem from Chapter 6.3. Steps 1-2.

in the figures), meaning the groups cannot be improved by further iterations. Typically,

Algorithm 2 would repeat the process for another iteration to check convergence, but we

have not included the subsequent iteration in additional figures because no changes to the

groups occur.

6.4 Method 3 Initialization Algorithm

Any non-empty sets {S1,0, S2,0, · · · , SK,0} with the property
⋃K
k=1 Sk,0 = {1, 2, · · · ,M}

(where
⋃K
k=1 Sk,0 is a disjoint set) can be used as an initialization to Algorithm 2, however

through testing we have determined that the improvement of this starting grouping affects

not only the convergence of the algorithm, but it also improves the final effective SNR gain.

This makes the initialization stage very important, and worthy of an algorithm of its own.

To prepare for Algorithm 3, we first formulate a method that brings Algorithm 2 closer to

the upper bound in (6.3), i.e. where the elements are grouped in a way that minimizes their

cancelled magnitude. Magnitude cancellation occurs when the magnitude of an element’s

r1,m values is out of phase with the other elements in its group. Therefore, the closer the

phase values (∠r1,m) are within a group, the more we expect the magnitudes to work together
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Algorithm 3 Initialize M3 Algorithm
Input: r1, K,M
Output: {S0,1, S0,2, · · · , S0,K}

1: θ = ∠r1
2: for m = 1 :M do
3: if m =M then
4: δ1↔m = θ1 − θm
5: else
6: δ(m+1)↔m = θm+1 − θm
7: end if
8: end for
9: P ← {1 :M}

10: for k = 1 : K do
11: xk = argmaxm∈P δ(m+1)↔m {Note: x = [x1, x2, · · · , xK ]T}
12: P ← P\{xk}
13: end for
14: x = sort (x) {Note: Ascending order}
15: for k = 1 : K do
16: if k = K then
17: Sk ← {x1 : xk+1}
18: else
19: Sk ← {(xk + 1) : xk+1}
20: end if
21: end for
22: for ksel = 1 : K do
23: S ′

ksel
← argminmsel∈Sksel

|r1,msel|
24: end for
25: for m = {1 :M} \

{⋃K
k=1 S

′
k

}
do

26: for k = 1 : K do
27: µk = f1 (S

′
k ∪ {m})− f1 (S ′

k)
28: end for
29: kbest = argmaxi µi
30: S ′

kbest
← S ′

kbest
∪ {m}

31: end for
{S1,0, S2,0, · · · , SK,0} ← {S ′

1, S
′
2, · · · , S ′

K}
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Figure 6.4: Illustrating Algorithm 2 using toy problem from Chapter 6.3. Steps 3-4.

towards effective SNR gain. The proposed method to mitigate magnitude cancellation begins

by plotting the complex phase of each element’s r1,m value, and then finding the largest K

gaps between the complex phases, where δ(m+1)↔m denotes the phase gap between element

m and element m+1. We then define P as the set of all elements 1 :M . Next, the K largest

complex phase gaps (1 for every selected group) are identified and the element corresponding

to the beginning of the gap is stored as the variable xk, where x = [x1, x2, · · · , xK ]T, and

then xk is removed from the set P . The K element indices contained in x are then sorted

from smallest to largest via sort(x) to be implemented in ascending order. This procedure

is illustrated in Fig. 6.5 and is contained in Algorithm 3, Steps 1-14. Next, we insert K

barriers in between these elements at the largest K phase gap values, δ as in Fig. 6.6. These

barriers denote the boundaries for each group and correspond to Steps 15-21, where Sk is

the set of elements within the group k. Thus we have created K intermediate groups where

the phase values are all in-phase as much as possible, but we are not done. Within each of

these groups, we examine the magnitudes of each element’s r1,m value and then select the

elements, msel with the K smallest magnitudes. At this point, all other elements from the

groups are removed leaving one IRS element per group in our new set of groups S ′
k (Steps

22-24). Then, the metric measurement method similar to Algorithm 2 is used to re-distribute
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the rest of the remaining elements into groups (Steps 25-31), until we have the full initialized

sets {S1,0, S2,0, · · · , SK,0}, where
⋃K
k=1 Sk,0 = {1, 2, · · · ,M} (

⋃K
k=1 Sk,0 is a disjoint set).

The additional re-distribution in Algorithm 3 is needed after the intermediate grouping

stage because although the r1,m values are likely to have coherent phases at this stage, the

grouping themselves are not ideal. For example, instead of allocating a single element to its

own group as in Fig. 3, it may be better to combine two nearby groups and open up that

partitioning to use elsewhere. The reason we select the smallest magnitude value instead of

the largest magnitude to define the initial point within each group is that we would prefer

to distribute the largest magnitude values according their effective SNR gain improvement,

as they would have a larger effect than the smallest magnitude values.

Thus, we have proposed that because our optimization problem in (6.5a) is not convex

in nature, our initial groupings have a significant effect on convergence and final effective

SNR. In this sub-chapter, we proposed one potential solution to close the gap between the

algorithm’s effective SNR gain performance and the upper bound found in (6.3). Next, in

Chapter 6.5 we test this assertion and compare the speeds of convergence with dedicated

simulations.

6.5 Algorithm Performance Analysis

In order to test the performance of Algorithm 3, we simulated a channel,Vr, with N = 4

(2× 2 BS) and M = 36 (6× 6 IRS) modeled from Chapter 2.4 and set r1 as its largest right

singular vector. with a random initial partitioning input as a baseline performance gauge to

the initialization algorithm. We ran 500 channel realizations to determine average values.

As seen in Fig. 6.7, the initial grouping state design allows for greater effective SNR out-

put, as well as earlier convergence to the upper bound of Method 3 derived in (6.3). Another

important feature that saves on computational costs is the speed (number of iterations) at

which the algorithm converges. Especially when working with massive IRSs in the future,

individually running M allocation assignments every iteration becomes costly. In Fig. 6.8
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Figure 6.5: Illustrative representation of the initialization algorithm for Method 3, Algorithm
3 steps 1-10. Here the complex phases of r1,m for M = 12 are represented as blue lines with
magnitude 1. In this case, K = 4, which corresponds to K separate δ values corresponding
to the 4 largest gaps between phases.
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Figure 6.6: Illustrative representation of the initialization algorithm for Method 3, Algorithm
3 Steps 11-16. Here the magnitudes of r1,m are included as well as the complex phases. In
this case, K = 4, where the grouping boundaries (shown in the figure as dashed lines) replace
the δ locations in Fig. 6.5. The highlighted red values are the values of r1,m in each group
k with the smallest magnitude.
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Figure 6.7: Comparing the effective SNR output of Algorithm 2 with and without the use
of designed initial groups from Algorithm 3. Channel generated with N = 4 and M = 36.

we see that Algorithm 3 reduces the average number of iterations until convergence by about

a factor of two.

6.6 Overhead Analysis

Since this grouping method requires an additional feedback transmission indicating the group

that each IRS element belongs to, the number of required feedback bits increases from (5.7).

With proper coding, we can communicate the location of each IRS element with a string of

M coded bit strings of size ⌈log2 (Mρ)⌉ which increases the overhead as seen in (6.8). With

given ρ, our achievable rate equation for Method 3 is given by:
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Figure 6.8: Comparing the average number of iterations until convergence of Algorithm 2
with and without the use of designed initial groups from Algorithm 3.
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R =

1− (NM + 1)T0
Ttot

− MρbF + ⌈log2 (Mρ)⌉M

TtotBFlog2

(
1 + pF|hF|2

N0BF

)
Blog2

(
1 +

p
∣∣qHVrϕ

⋆
M3

∣∣2
BN0

)
, (6.8)

where, like Method 1, the pre-log overhead term is monotonically increasing with ρ. Due

to the behavior of overhead with respect to ρ and the fact that the output of our proposed

algorithm approaches the upper bound on performance relatively quickly (as seen in Fig.

6.7), it seems that this method can likely take advantage of the lower number of groups to

make the effective TF lower than expected. This gives Method 3 a lot of potential to find

the right trade-off between effective SNR gain and overhead costs to outperform the other

methods. We investigate the comparative performance with simulations in Chapter 7 to

observe whether the increase in effective SNR gain is worth the extra cost of overhead.
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Chapter 7

Simulations

Abstract

In this chapter we introduce simulation setup to validate the performance of our pro-

posed methods, including additions to our channel model, and necessary parameters

that have to be chosen. In this chapter, we also observe the simulations and discuss

the results of the proposed grouping schemes and reflection coefficient maximization

problems in Chapters 4-6.

7.1 Simulation Setup

Before we present the simulations and results, it is necessary to describe the parameters

used to perform the simulations in our models. The parameters in Table 7.1 are used for

the simulations and are included here for reference, where Pmax is the maximum power

available to be allocated between p and pF (i.e. Pmax = p+ pF), and Bmax is the maximum

bandwidth available to be allocated between B and BF (i.e. Bmax = B + BF). Note that

in the simulations, the maximum achievable rate results are normalized by Bmax with the

associated units of bps/Hz.

Ttot T0 bF Pmax Bmax N0

1.525 ms Ttot10
−5 16 bits 25 dBm 10 MHz -75 dBm/Hz

Table 7.1: Parameters for Simulations
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7.1.1 Channel Clustering

In our simulations, we consider the URA channel model in Section 2.1. The channel is

modified to resemble a clustered channel model adapted from [31], where each cluster is

made up of multiple subrays. Each mention of Nch is replaced by NclusterNsubray whereby

every azimuth and elevation angle in the previous model is treated as a cluster angle, and

each has Nsubray angles reflecting from the cluster. In this work we use Ncluster = 8 and

Nsubray = 10 and the angles are distributed as in [31]. The cluster angles are distributed as if

they are the Nch angle pairs in Chapter 2.4. The main difference in angle distribution when

comparing the cluster angles to the subray angles is that the subray angles are uniformly

distributed with angular spread of 5◦, where the center angles of each subray cluster are

defined by the angle pair corresponding to each Ncluster. This model, in effect, makes the

channel more correlated as we see in a realistic practical setting and lends itself to methods

of optimization such as ours that allocate elements based on channel information.

7.1.2 Grouping Ratio Optimization

We have established in this thesis that the IGR ρ⋆ can be set before data transmission

unlike the existing grouping method in [4]. Therefore in our simulations we implement the

IGR at each channel realization to show the potential ideal performance of our designed

methods. In testing, we found that the achievable rate maximization problem with respect

to ρ is not strictly convex for each channel realization, therefore it cannot be explicitly solved.

Therefore, in our simulations we simply perform an exhaustive search over all possible values

of ρ to find the IGR. In Methods 1 and 2 and the existing grouping method in [4] we use the

set of ρκ = κ
M
,∀κ ∈ divisors(M) and Method 3 searches over all values of ρm = m

M
, ∀m.
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7.1.3 Bandwidth and Power

The resources B,BF, p, and pF are allocated according to the methodologies introduced in [2].

Therein the resource allocation solves the optimization problem:

max
p,pF,B,BF

R (7.1a)

s.t. p+ pF ≤ Pmax, B +BF ≤ Bmax (7.1b)

p ≥ 0, pF ≥ 0, B ≥ 0, BF ≥ 0 (7.1c)

TF ≤ 1− TE
Ttot

. (7.1d)

While this problem is not jointly convex, it was reformulated to be jointly convex by taking

the logarithm of R and through the following linear transformations (which preserve con-

vexity): pF = Pmax − p and BF = Bmax − B. These steps come together in the following

maximization problem

max
p,B

log R (7.2a)

s.t. 0 ≤ p ≤ Pmax − pF, 0 ≤ B ≤ Bmax −BF (7.2b)

TF ≤ 1− TE
Ttot

. (7.2c)

From this problem they derive two explicit convex solutions, one with respect to B when p

is fixed and the other solution with respect to p when B is fixed. In this work we utilize

these solutions for our optimized B and p at each channel realization.

7.2 Benchmarks

The first simulation, found in Fig. 7.1, compares the resulting effective SNR from the

three proposed methods in this thesis along with the method in [4] as a reference baseline.

The upper bound plot in this figure represents the maximum achievable SNR based on the
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Figure 7.1: Comparison of the 3 Proposed Methods in terms of effective SNR, with the
existing grouping from [4] as a baseline and the size parameters: M = 36 and N = 4.
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Figure 7.2: Comparison of the 3 Proposed Methods in terms of overhead with fixed resource
allocation, with the existing grouping method as a baseline and M = 36
Note: The stair-stepping nature of the Method 3 curve is a result of the ⌈log2 (Mρ)⌉M term
from (6.8) that causes uneven breakpoints at each ρ.

bound in (3.5) and for most methods this is only achievable when K = M . Based on our

formulations, we expect that the effective SNR improves for each successive method, as the

purpose for creating more freedom of optimization is to get closer to this upper bound in

(3.5) with smaller ρ, and this figure confirms that hypothesis. Specifically, Method 3 clearly

shows the best SNR performance and converges to the upper bound the fastest among all

methods with respect to the grouping ratio ρ. Note the symmetry of the effective SNR curve

for Method 2 with respect to the center point ρ = 6
36

. As described in Chapter 5.3, this is

due to the reciprocal nature of the two vector optimization. We see that the effective SNR

of Method 2 is always at a minimum at the center point defined as ρc =
√
M
M

.

In Fig. 7.2 we see that the overhead is monotonically increasing with grouping ratio ρ for

56



all but one of the curves. Note that though Method 2 is the exception to this observation,

we see that the overhead plot shows the same symmetry as in Fig. 7.1, and the overhead

is monotonically increasing after the center point ρc. Therefore, for Method 2, we can

essentially define the range for the implementable grouping ratio as ρc ≤ ρ ≤ 1, because any

grouping ratio lower than ρc can be described by a corresponding ρ with the same effective

SNR and overhead on the opposite side of ρc.

In a general sense, effective SNR gain with a smaller ρ is more valuable in practice because

it corresponds to a lower overhead cost. That is to say given two values of effective SNR

that are identical within a method, the value at a lower ρ is preferred, because it follows

that the achievable rate performance is improved with smaller overhead (with the exception

of the symmetry exhibited in Method 2). Method 3 clearly demonstrates this observation as

its superior achievable rate performance is a product of its rapid convergence to the effective

SNR upper bound with respect to ρ. Because Method 3 has the largest relative overhead

costs with respect to ρ we should expect the IGR chosen for this method to be significantly

smaller than the other methods thus a lower effective overhead.

Additionally, Method 3 has the ability to set K ∈ {1 :M} unlike other methods, this

allows for better selectivity in selecting the precise IGR. In an extreme example, Fig. 7.3

shows the effective SNR curves with respect to ρ when M = 25. However, in this case, the set

of ρ ∈
{

1
25
, 5
25
, 25
25

}
only has 3 values for the other methods to choose from for their IGR. As

Method 3 has 25 values of ρ to choose from for its IGR it is able to take advantage of the ideal

trade-off where other methods cannot. This introduces limitations on IRS construction for

systems using other grouping methods, which is a problem that has not been investigated in

previous works. Due to the integer limitation on Z, most grouping methods require specially-

sized IRSs that allow for the most divisions corresponding to ρ points. This is something to

consider when constructing IRS arrays. However, with Method 3, any size and shaped IRS

array can be dynamically grouped, giving more reasons why our method is useful.

57



Figure 7.3: Comparison of the 3 Proposed Methods in terms of effective SNR, with the
existing grouping from [4] as a baseline and the size parameters: M = 25 and N = 4.
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Figure 7.4: Rate with respect to Grouping Ratio, M = 16.

7.3 Convergence of Ideal Grouping Ratio

This work is the first of its kind to fully investigate the effect of the IGR on maximum achiev-

able performance and convergence, because before our formulation, the IGR was unattain-

able. In the previous grouping work [4], the achievable rate with respect to the grouping

ratio was shown to be concave when averaged over many channel realizations. To analyze

the effects of a variable IRS size on the performance trade-off with respect to grouping ratio

we present Figs. 7.4-7.6 which show the achievable rate with respect to grouping ratio for

M = 16, 64, and 256. When averaged over 500 channel realizations we see the concave

behavior of the curves and that each method has a single IGR that varies with M. After

contrasting Figs. 7.4-7.6, it is clear that after increasing M , the IGR for all curves decreases

and the curves themselves become steeper. This indicates that with large M , achieving the

IGR is more important for achievable rate performance than in small M scenarios, because
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Figure 7.5: Rate with respect to Grouping Ratio, M = 64.

there is a bigger gap between the achievable rate of the IGR and the adjacent achievable rate

values. This has implications for massive MIMO and for massive IRS system integration, as

M increases, ideal grouping becomes paramount in mitigating overhead.

We observed in Figs. 7.4-7.6 that the IGR decreased as M increased. This seems to

indicate some convergent behavior of the IGR, which we investigate further in the next

simulations. In Fig. 7.7, we simulate the selected IGR of various grouping methods (averaged

over 500 channel realizations) as M increases. In this figure, it is clear that Method 3 groups

the most efficiently compared to the other methods, but as M increases, the denominator of

ρ increases, so we also simulate the ideal number of groups Mρ⋆ to investigate its convergent

behavior as well. In Fig. 7.8 we isolate the grouping from the increasing M to identify

convergent behaviors. We observe that Methods 1 and 3 converge to a certain value of K

as M increases, and the other two methods continue to change as M increases. Notably,

Method 2 converges to the ideal K where K =
√
M . This follows from Figs. 7.4-7.6 where
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Figure 7.6: Rate with respect to Grouping Ratio, M = 256.
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Figure 7.7: Convergence of the IGR for different methods, N = 9.

the ρc was always the point with the highest achievable rate. This is also a hindrance when

we consider massive MIMO and massive IRS integrated systems, as the minimum overhead

is limited by the overhead at the center point ρc.

The ideal K curve for Method 3 in Fig. 7.8 also has important implications for massive

MIMO and massive IRS integrated systems. We observe that the ideal K for Method 3

converges toK = 2. This efficient grouping is needed to combat the large overhead associated

with this method. However, with very large M and N , the convergence to K = 2 is the

simplest case of grouping and has the benefit of lower complexity partitioning at the BS.

This implies that the best way to improve Method 3 is to further optimize its algorithm to

converge faster to the upper bound, leading to a larger achievable rate, which we investigate

in the next simulation.
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Figure 7.8: Convergence of the ideal number of groups K for different methods, N = 9.

7.4 Achievable Rate

The maximum achievable rate curves in Fig. 7.9 are arguably the most important to discuss

for this thesis because maximizing achievable rate is one of the main motivations for our

proposed grouping scheme. Several baseline curves are added to this simulation to better

understand the relative performance of the proposed methods. The Reflecting Surface (RS)

Mirror curve is simulating the performance of a non-intelligent reflecting surface. That

is to say the surface is perfectly reflecting without intelligently directing its phase shifts,

i.e. ϕ = 1M . The RS in this case is acting as a signal “mirror” where any signal reflects

according to Snell’s Law [5]. Because the RS mirror does not require feedback to implement

phase shifts and only needs to estimate the vϕ channel from (2.3), the overhead is greatly

reduced in this framework. For this simulation we redefine the overhead parameters from

(2.7) to fit this model. We say that TE = NT0, meaning that only N pilot tones are required
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Figure 7.9: Maximum achievable rate in bps/Hz for proposed grouping methods and baseline
curves, N = 9.
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for channel estimation and TF = 0 because feedback is not required in this method. The

other baseline curve introduced in Fig. 7.9 is the “No Grouping” method. This is the method

investigated in [2] and is oblivious to grouping in general. It is used to show how much of a

difference the proposed methods can make on the final maximum achievable rate compared

to a default method that suffers from extreme overhead loss. The “No Grouping” method

uses the following overhead parameters in its overhead model

TE = T0 (NM + 1) and TF =
bFM

BFlog2

(
1 + pF|hF|2

BFN0

) ,
where TE is the same as in the proposed methods and TF represents the bits for a full phase

shift sent for every IRS element M . Therefore, what these curves attempt to show are the

two extremes of complexity and overhead when it comes to IRS communication. The “RS

Mirror” method shows what is possible without feedback or IRS phase optimization and the

“No Grouping” method shows what happens when overhead mitigation is not implemented

at all.

As seen in Fig. 7.9, the IRS implementation without grouping has poor achievable rate

performance as M increases compared to the other methods, which confirms the work of [2]

and the need for grouping as a way to mitigate overhead for massive MIMO/massive IRS

systems. The “Existing Grouping” method from [4] has the benefit of the lowest overhead of

grouping methods, so it is always increasing asM increases, but only slightly outperforms the

“RS Mirror” curve. Additionally, it is still not immune to overhead degradation as it performs

worse than the “RS Mirror” curve as M becomes very large. All of the proposed methods

have a peak performance number of IRS elements for its maximum achievable rate before

they succumb to overhead costs. In this simulation, that point is M = 324. Interestingly,

this peak M is shared among all proposed methods. This indicates that the ideal M for

these proposed methods depends more on the number of antennas at the BS and the channel

parameters than the method simulated.
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Figure 7.10: Maximum achievable rate in bps/Hz for proposed grouping methods and base-
line curves, N = 36.
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Figure 7.11: Maximum achievable rate in bps/Hz for proposed grouping methods and base-
line curves, N = 64.
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To illustrate scenarios with large N , i.e. approaching massive MIMO, we investigate the

performance of N = 36 and N = 64 in Figs. 7.10-7.11. In these figures, we see that the

proposed Method 3 is still the best performing method in terms of maximum achievable

rate. The major downside of this method that hinders its performance at large M and N

is the fixed TE overhead set by the channel estimation. As we increase N , every method,

including Method 3, eventually gives way to overwhelming overhead costs so that RS Mirror

(which requires the least amount of overhead) becomes the best performing method. Since

this thesis only considers the simple case of LS channel estimation, there is certainly room

for improvement in practice such as implementing more efficient state-of-art IRS channel

estimation techniques such as those proposed in [20] and [29] in order to reduce TE. As

overhead cost decreases, numerical results indicate that the proposed Method 3 is effectively

implementable in larger and larger massive MIMO or massive IRS systems for grouping and

reflection coefficient optimization.

In our final simulation in Fig. 7.12 we plot the effective SNR of all of the same curves

in Fig. 7.9. We have already established that Method 3 is the best performing method in

terms of effective SNR, but this figure shows that there is still room to be improved in our

Method 3 algorithms. From our framework for the “No Grouping” method, it is clear that the

effective SNR performance is equivalent to the upper bound in (3.5). Thus its curve in Fig.

7.12 represents this value with respect to M . Therefore, the gap in effective SNR between

“No Grouping” and Method 3 is the potential performance increase to be implemented. With

improvements to Method 3 that reduce overhead or improve the convergence of Algorithm

2 to the upper bound, this gap in effective SNR can be diminished.
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Figure 7.12: Effective SNR for proposed grouping methods and baseline curves with respect
to M, N = 9.
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Chapter 8

Conclusions

8.1 Conclusions

This thesis set out to prove that our proposed IRS element grouping scheme alleviates over-

head limitations of IRS technology and thus opens up IRS use for high complexity massive

MIMO applications. Current state-of-art works have used IRS element grouping to reduce

immense overhead costs needed to optimize the reflection of an IRS-aided transmission,

specifically by reducing the feedback communication and channel estimation time, but the

number of groups had to be guessed at the BS and was not capable of being optimized to

the wireless channel. In this thesis, we reformulated the grouping problem and showed that

by leveraging the entire reflected channel matrix, we could design better element groupings

that attained significantly improved effective SNR. We proposed three methods for grouping

and reflection coefficient optimization, where the final dynamic grouping method shows the

best performance. These dynamic element groupings change with each channel block and

vary in group size and location to find the most efficient partitioning. While these grouping

require more overhead to implement, our simulations show that the achievable rate perfor-

mance trade-off is favorable, especially when considering the flexibility to choose the ideal

grouping. Our simulations show that the proposed dynamic grouping method holds great

potential to largely mitigate the high overhead associated with implementing IRS technology

in massive MIMO systems.

70



8.2 Future Directions and Research

In this work we used an exhaustive search to find the best IGR for every channel. This

is because, in practice, it is clear that the achievable rate as a function of ρ is not strictly

convex for every channel realization and therefore not directly solvable. We leave the devel-

opment of an efficient solution to find IGR for future research, which is needed in practice to

keep calculation costs low but was not important to our simulations results. If no solvable

optimization problem can be found, then in practice the convergence behavior of the IGR

from Chapter 7 can be used to shrink the range of the exhaustive search.

The biggest hindrance for Method 3 is channel estimation overhead. If a channel estima-

tion technique that utilized orthogonal pilot tones was developed to reduce TE to T0 (M + 1),

then numerical results indicate that the performance of Method 3 would have no issues out-

performing the “RS Mirror” method for feasible massive MIMO or massive IRS implementa-

tions. Works such as [29] and [20] have proposed more efficient solutions, but there is room

for improvement.

We established in Chapter 7 that Method 3 chooses a small IGR to minimize its high

overhead. Therefore by improving the initialization algorithm, Algorithm 3, it is possible to

decrease the gap to the upper bound with respect to ρ. The best way to do this would be to

formulate an explicit solution that can find optimal grouping in one-shot rather than require

the iterative solution proposed in this work. The initialization in Algorithm 3 considers

the magnitude and angle of each IRS element’s r1,m value to design an initial grouping.

The magnitude and angle could be combined to form a “relative magnitude” between two

IRS elements. The relative magnitude would be calculated by characterizing the fraction of

the magnitude of r1,m1 in the angle direction of another element’s r1,m2 complex value. By

determining the relative magnitude between each IRS element and every other element it

should theoretically be possible to use this information in a way to design the optimal groups

in terms of effective SNR performance.
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Appendix A

Definition of the Kronecker Product

a = [a1, a2, a3]
T ,b = [b1, b2, b3]

T

a⊗ b = [a1b1, a1b2, a1b3, · · · , a3b1, a3b2, a3b3]T
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Appendix B

Definition of the Khatri-Rao Product

Here is the definition of the column-wise Khatri-Rao product used in this work:

C =

[
c1 c2 c3

]
=


c1,1 c1,2 c1,3

c2,1 c2,2 c2,3

c3,1 c3,2 c3,3

 ,

D =

[
d1 d2 d3

]
=


d1,1 d1,2 d1,3

d2,1 d2,2 d2,3

d3,1 d3,2 d3,3

 ,
where the Khatri-Rao product of these two matrices would be:

C⊙D =

[
c1 ⊗ d1 c2 ⊗ d2 c3 ⊗ d3

]

=



c1,1d1,1 c1,2d1,2 c1,3d1,3

c1,1d2,1 c1,2d2,2 c1,3d2,3

c1,1d3,1 c1,2d3,2 c1,3d3,3
...

...
...

c3,1d1,1 c3,2d1,2 c3,3d1,3

c3,1d2,1 c3,2d2,2 c3,3d2,3

c3,1d3,1 c3,2d3,2 c3,3d3,3


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