Show simple item record

dc.contributor.authorStottlemire, Bryce J.
dc.contributor.authorMiller, Jonathan D.
dc.contributor.authorWhitlow, Jonathan
dc.contributor.authorHuayamares, Sebastian G.
dc.contributor.authorDhar, Prajnaparamita
dc.contributor.authorHe, Mei
dc.contributor.authorBerkland, Cory J.
dc.date.accessioned2023-03-02T19:44:15Z
dc.date.available2023-03-02T19:44:15Z
dc.date.issued2021-04-22
dc.identifier.citationStottlemire, B. J., Miller, J. D., Whitlow, J., Huayamares, S. G., Dhar, P., He, M., & Berkland, C. J. (2021). Remote Sensing and Remote Actuation via Silicone-Magnetic Nanorod Composites. Advanced materials technologies, 6(6), 2001099. https://doi.org/10.1002/admt.202001099en_US
dc.identifier.urihttp://hdl.handle.net/1808/33988
dc.descriptionThis is the peer reviewed version of the following article: Stottlemire, B. J., Miller, J. D., Whitlow, J., Huayamares, S. G., Dhar, P., He, M., Berkland, C. J., Remote Sensing and Remote Actuation via Silicone–Magnetic Nanorod Composites. Adv. Mater. Technol. 2021, 6, 2001099. https://doi.org/10.1002/admt.202001099, which has been published in final form at https://doi.org/10.1002/admt.202001099. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. This article may not be enhanced, enriched or otherwise transformed into a derivative work, without express permission from Wiley or by statutory rights under applicable legislation. Copyright notices must not be removed, obscured or modified. The article must be linked to Wiley’s version of record on Wiley Online Library and any embedding, framing or otherwise making available the article or pages thereof by third parties from platforms, services and websites other than Wiley Online Library must be prohibited.en_US
dc.description.abstractThe capacity for a soft material to combine remote sensing and remote actuation is highly desirable for many applications in soft robotics and wearable technologies. This work presents a silicone elastomer with a suspension of a small weight fraction of ferromagnetic nickel nanorods, which is capable of both sensing deformation and altering stiffness in the presence of an external magnetic field. Cylinders composed of silicone elastomer and 1% by weight nickel nanorods experience large increases in compressive modulus when exposed to an external magnetic field. Incremental compressions totaling 600 g of force applied to the same silicone–nanorod composites increase the magnetic field strength measured by a Hall effect sensor enabling the material to be used as a soft load cell capable of detecting the rate, duration, and magnitude of force applied. In addition, lattice structures are 3D printed using an ink composed of silicone elastomer and 1% by weight nickel nanorods, which possess the same sensing capacity.en_US
dc.publisherAdvanced Materials Technologiesen_US
dc.rights© 2021 Wiley-VCH GmbHen_US
dc.subject3D printingen_US
dc.subjectMagnetic elastomersen_US
dc.subjectRemote controlen_US
dc.subjectSoft actuatorsen_US
dc.subjectSoft sensorsen_US
dc.titleRemote Sensing and Remote Actuation via Silicone–Magnetic Nanorod Compositesen_US
dc.typeArticleen_US
kusw.kuauthorStottlemire, Bryce J.
kusw.kuauthorMiller, Jonathan D.
kusw.kuauthorWhitlow, Jonathan
kusw.kuauthorHuayamares, Sebastian G.
kusw.kuauthorDhar, Prajnaparamita
kusw.kuauthorHe, Mei
kusw.kuauthorBerkland, Cory J.
kusw.kudepartmentChemical and Petroleum Engineeringen_US
kusw.kudepartmentPharmaceutical Chemistryen_US
dc.identifier.doi10.1002/admt.202001099en_US
dc.identifier.orcidhttps://orcid.org/0000-0002-7224-6486en_US
dc.identifier.orcidhttps://orcid.org/0000-0002-7164-7886en_US
kusw.oaversionScholarly/refereed, author accepted manuscripten_US
kusw.oapolicyThis item meets KU Open Access policy criteria.en_US
dc.identifier.pmidPMC9603773en_US
dc.rights.accessrightsopenAccessen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record