KUKU

KU ScholarWorks

  • myKU
  • Email
  • Enroll & Pay
  • KU Directory
    • Login
    View Item 
    •   KU ScholarWorks
    • Engineering
    • Civil, Environmental & Architectural Engineering Scholarly Works
    • View Item
    •   KU ScholarWorks
    • Engineering
    • Civil, Environmental & Architectural Engineering Scholarly Works
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Implementation of High-Performance Fiber Reinforced Concrete Coupling Beams in High-Rise Core-Wall Structures in the Seattle Area

    Thumbnail
    View/Open
    2011 Lequesne et al. ACI SP-280.pdf (2.820Mb)
    Issue Date
    2011-12-27
    Author
    Lequesne, Rémy D.
    Setkit, Monthian
    Kopczynski, Cary
    Ferzli, Joe
    Cheng, Min-Yuan
    Parra-Montesinos, Gustavo
    Wight, James K.
    Publisher
    American Concrete Institute
    Type
    Article
    Article Version
    Scholarly/refereed, publisher version
    Metadata
    Show full item record
    Abstract
    Experimental and analytical studies that led to the incorporation of strain-hardening, high-performance fiber reinforced concrete (HPFRC) coupling beams in the design of a high-rise core-wall structure in Seattle, WA, are described. A total of eight HPFRC coupling beams with span-to-depth ratios ranging between 1.75 and 3.3 were tested under large displacement reversals. The tension and compression ductility of HPFRC materials allowed an approximately 70% reduction in diagonal reinforcement, relative to an ACI Building Code (318-08) compliant coupling beam design, in beams with a 1.75 span-to-depth aspect ratio and a total elimination of diagonal bars in beams with a 2.75 and 3.3 aspect ratio. Further, special column-type confinement reinforcement was not required except at the ends of the beams. When subjected to shear stress demands close to the upper limit in the 2008 ACI Building Code (0.83 f’c [MPa] (10 f’c [psi])), the coupling beams with aspect ratios of 1.75, 2.75 and 3.3 exhibited drift capacities of approximately 5%, 6% and 7%, respectively. The large drift and shear capacity exhibited by the HPFRC coupling beams, combined with the substantial reductions in reinforcement and associated improved constructability, led Cary Kopczynski & Co. to consider their use in a 134 m (440 ft) tall reinforced concrete tower. Results from inelastic dynamic analyses indicated adequate structural response with coupling beam drift demands below the observed drift capacities. Also, cost analyses indicated 20-30% savings in material costs, in addition to much easier constructability and reduced construction time.
    URI
    http://hdl.handle.net/1808/32689
    DOI
    https://www.concrete.org/publications/internationalconcreteabstractsportal/m/details/id/51683585
    Collections
    • Civil, Environmental & Architectural Engineering Scholarly Works [120]
    Citation
    Lequesne, R. D., Setkit, M., Kopczynski, C., Ferzli, J., Cheng, M.-Y., Parra-Montesinos, G. J., & Wight, J. K. (2011). Implementation of High-Performance Fiber Reinforced Concrete Coupling Beams in High-Rise Core-Wall Structures. In SP-280: Advances in FRC Durability and Field Applications. Farmington Hills, MI: American Concrete Institute. 12 pp.

    Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.


    We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.


    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    Browse

    All of KU ScholarWorksCommunities & CollectionsThis Collection

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    The University of Kansas
      Contact KU ScholarWorks
    Lawrence, KS | Maps
     
    • Academics
    • Admission
    • Alumni
    • Athletics
    • Campuses
    • Giving
    • Jobs

    The University of Kansas prohibits discrimination on the basis of race, color, ethnicity, religion, sex, national origin, age, ancestry, disability, status as a veteran, sexual orientation, marital status, parental status, gender identity, gender expression and genetic information in the University’s programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Director of the Office of Institutional Opportunity and Access, IOA@ku.edu, 1246 W. Campus Road, Room 153A, Lawrence, KS, 66045, (785)864-6414, 711 TTY.

     Contact KU
    Lawrence, KS | Maps