KUKU

KU ScholarWorks

  • myKU
  • Email
  • Enroll & Pay
  • KU Directory
    • Login
    View Item 
    •   KU ScholarWorks
    • Engineering
    • Bioengineering Program Scholarly Works
    • View Item
    •   KU ScholarWorks
    • Engineering
    • Bioengineering Program Scholarly Works
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Self-Assembled Recombinant Proteins on Metallic Nanoparticles as Bimodal Imaging Probes

    Thumbnail
    View/Open
    Yuca_2019.pdf (2.016Mb)
    Issue Date
    2019-01-23
    Author
    Yuca, Esra
    Tamerler, Candan
    Publisher
    SAGE Publications
    Type
    Article
    Article Version
    Scholarly/refereed, author accepted manuscript
    Rights
    Copyright © 2019, The Minerals, Metals & Materials Society
    Metadata
    Show full item record
    Abstract
    Combining multiple modalities is central to developing the new methods for sensing and imaging that are required for comprehensive understanding of events at the molecular level. Various imaging modalities have been developed using metallic nanoparticles owing to their exceptional physical and chemical properties. Due to their localized surface plasmon resonance characteristics, gold and silver nanoparticles exhibit unique optoelectronic properties commonly used in biomedical sciences and engineering. Self-assembled monolayers or physical adsorption have previously been adapted to functionalize the surfaces of nanoparticles with biomolecules for targeted imaging. However, depending on differences among the functional groups used on the nanoparticle surface, wide variation in the displayed biomolecular property to recognize its target may result. In the last decade, the properties of inorganic binding peptides have been proven advantageous for assembling selective functional nano-entities or proteins onto nanoparticle surfaces. Herein we explored the formation of self-assembled hybrid metallic nano-architectures composed of gold and silver nanoparticles with fluorescent proteins for use as bimodal imaging probes. We employed metal-binding peptide-based assembly to self-assemble green fluorescence protein onto metallic substrates of various geometries. Assembly of the green fluorescent proteins, genetically engineered to incorporate gold- or silver-binding peptides onto metallic nanoparticles, resulted in the generation of hybrid-, biomodal-imaging probes in a single step. Green fluorescent activity on gold and silver surfaces can be monitored using both plasmonic and fluorescent signatures. Our results demonstrate a novel bimodal imaging system that can be finely tuned with respect to nanoparticle size and protein concentration. Resulting hybrid probes may mitigate the limitation of depth penetration into biologic tissues and provide a high signal-to-noise ratio and sensitivity.
    URI
    http://hdl.handle.net/1808/32420
    DOI
    https://doi.org/10.1007/s11837-018-03325-3
    Collections
    • Bioengineering Program Scholarly Works [146]
    Citation
    Yuca, E., Tamerler, C. Self-Assembled Recombinant Proteins on Metallic Nanoparticles as Bimodal Imaging Probes. JOM 71, 1281–1290 (2019). Copyright © 2019, The Minerals, Metals & Materials Society. https://doi.org/10.1007/s11837-018-03325-3

    Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.


    We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.


    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    Browse

    All of KU ScholarWorksCommunities & CollectionsThis Collection

    My Account

    Login

    Statistics

    View Usage Statistics

    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    The University of Kansas
      Contact KU ScholarWorks
    Lawrence, KS | Maps
     
    • Academics
    • Admission
    • Alumni
    • Athletics
    • Campuses
    • Giving
    • Jobs

    The University of Kansas prohibits discrimination on the basis of race, color, ethnicity, religion, sex, national origin, age, ancestry, disability, status as a veteran, sexual orientation, marital status, parental status, gender identity, gender expression and genetic information in the University’s programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Director of the Office of Institutional Opportunity and Access, IOA@ku.edu, 1246 W. Campus Road, Room 153A, Lawrence, KS, 66045, (785)864-6414, 711 TTY.

     Contact KU
    Lawrence, KS | Maps