KUKU

KU ScholarWorks

  • myKU
  • Email
  • Enroll & Pay
  • KU Directory
    • Login
    View Item 
    •   KU ScholarWorks
    • Dissertations and Theses
    • Dissertations
    • View Item
    •   KU ScholarWorks
    • Dissertations and Theses
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Analysis of axial-flow ventilation fans by vortex-lattice method

    Thumbnail
    View/Open
    hardin_1994_1578108.pdf (127.9Mb)
    Issue Date
    1994-05-31
    Author
    Hardin, Richard A.
    Publisher
    University of Kansas
    Type
    Dissertation
    Degree Level
    Ph.D.
    Discipline
    Mechanical Engineering
    Rights
    This item is protected by copyright and unless otherwise specified the copyright of this thesis/dissertation is held by the author.
    Metadata
    Show full item record
    Abstract
    A steady vortex-lattice method is used to solve the lifting surface equation for an axial flow fan. The type of fan studied is designed for industrial and ventilation applications and in thermofluid systems such as cooling towers. The fan blades are thin cambered surfaces manufactured from metal sheets. The numerical approach is inviscid and results in a boundary value problem with viscous effects partially accounted for by application of drag coefficient data. A non-linear wake alignment procedure is used to account for the effects of vorticity shedding in the wake and variation in wake geometry with operating conditions. The wake alignment procedure is semi-free with wake input parameters required for accurate use of the technique. A study of the wake parameters was conducted and gave trends in the variation of their values with flow rate. At "free-air" conditions, flow visualization estimates of these parameters were found to agree with those from the computations. Comparisons are made between the measured and predicted fan performance with and without a surrounding duct. The comparison of the results were especially good at the "free-air" condition using wake parameters determined from flow visualization and an inlet velocity profile measured using hot-wire anemometry.
    Description
    Ph.D. University of Kansas, Mechanical Engineering 1994
    URI
    http://hdl.handle.net/1808/31854
    Collections
    • Dissertations [4474]

    Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.


    We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.


    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    Browse

    All of KU ScholarWorksCommunities & CollectionsThis Collection

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    The University of Kansas
      Contact KU ScholarWorks
    Lawrence, KS | Maps
     
    • Academics
    • Admission
    • Alumni
    • Athletics
    • Campuses
    • Giving
    • Jobs

    The University of Kansas prohibits discrimination on the basis of race, color, ethnicity, religion, sex, national origin, age, ancestry, disability, status as a veteran, sexual orientation, marital status, parental status, gender identity, gender expression and genetic information in the University’s programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Director of the Office of Institutional Opportunity and Access, IOA@ku.edu, 1246 W. Campus Road, Room 153A, Lawrence, KS, 66045, (785)864-6414, 711 TTY.

     Contact KU
    Lawrence, KS | Maps