Show simple item record

dc.contributor.authorHusic, A.
dc.contributor.authorFox, J.
dc.contributor.authorAdams, E.
dc.contributor.authorFord, W.
dc.contributor.authorAgouridis, C.
dc.contributor.authorCurrens, J.
dc.contributor.authorBackus, J.
dc.date.accessioned2021-02-24T15:17:47Z
dc.date.available2021-02-24T15:17:47Z
dc.date.issued2019-02-25
dc.identifier.citationHusic, A., Fox, J., Adams, E., Ford, W., Agouridis, C., Currens, J., & Backus, J. (2019). Nitrate pathways, processes, and timing in an agricultural karst system: Development and application of a numerical model. Water Resources Research, 55, 2079– 2103. https://doi.org/10.1029/2018WR023703en_US
dc.identifier.urihttp://hdl.handle.net/1808/31472
dc.descriptionAn edited version of this paper was published by AGU. Copyright 2019 American Geophysical Union.en_US
dc.description.abstractNitrogen (N) contamination within agricultural‐karst landscapes and aquifers is widely reported; however, the complex hydrological pathways of karst make N fate difficult to ascertain. We developed a hydrologic and N numerical model for agricultural‐karst, including simulation of soil, epikarst, phreatic, and quick flow pathways as well as biochemical processes such as nitrification, mineralization, and denitrification. We tested the model on four years of nitrate (NO3−) data collected from a phreatic conduit and an overlying surface channel in the Cane Run watershed, Kentucky, USA. Model results indicate that slow to moderate flow pathways (phreatic and epikarst) dominate the N load and account for nearly 90% of downstream NO3− delivery. Further, quick flow pathways dilute NO3− concentrations relative to background aquifer levels. Net denitrification distributed across soil, epikarst, and phreatic water removes approximately 36% of the N inputs to the system at rates comparable to nonkarst systems. Evidence is provided by numerical modeling that NO3− accumulation via evapotranspiration in the soil followed by leaching through the epikarst acts as a control on spring NO3− concentration and loading. Compared to a fluvial‐dominated immature karst system, mature‐karst systems behave as natural detention basins for NO3−, temporarily delaying NO3− delivery to downstream waters and maintaining elevated NO3− concentrations for days to weeks after hydrologic activity ends. This study shows the efficacy of numerical modeling to elucidate complex pathways, processes, and timing of N in karst systems.en_US
dc.publisherWileyen_US
dc.rights© 2019. American Geophysical Union. All Rights Reserved.en_US
dc.titleNitrate Pathways, Processes, and Timing in an Agricultural Karst System: Development and Application of a Numerical Modelen_US
dc.typeArticleen_US
kusw.kuauthorHusic, A.
kusw.kudepartmentCivil, Environmental, and Architectural Engineeringen_US
dc.identifier.doi10.1029/2018WR023703en_US
dc.identifier.orcidhttps://orcid.org/0000-0002-4225-2252en_US
dc.identifier.orcidhttps://orcid.org/0000-0001-7536-7681en_US
dc.identifier.orcidhttps://orcid.org/0000-0001-9925-0269en_US
dc.identifier.orcidhttps://orcid.org/0000-0003-1517-4321en_US
kusw.oaversionScholarly/refereed, publisher versionen_US
kusw.oapolicyThis item meets KU Open Access policy criteria.en_US
dc.rights.accessrightsopenAccessen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record