dc.contributor.author | Wang, Zheng | |
dc.contributor.author | Wang, Yan | |
dc.contributor.author | Sweeney, John A. | |
dc.contributor.author | Gong, Qiyong | |
dc.contributor.author | Lui, Su | |
dc.contributor.author | Mosconi, Matthew W. | |
dc.date.accessioned | 2020-11-19T16:25:23Z | |
dc.date.available | 2020-11-19T16:25:23Z | |
dc.date.issued | 2019-05-31 | |
dc.identifier.citation | Wang, Z., Wang, Y., Sweeney, J. A., Gong, Q., Lui, S., & Mosconi, M. W. (2019). Resting-State Brain Network Dysfunctions Associated With Visuomotor Impairments in Autism Spectrum Disorder. Frontiers in integrative neuroscience, 13, 17. https://doi.org/10.3389/fnint.2019.00017 | en_US |
dc.identifier.uri | http://hdl.handle.net/1808/30885 | |
dc.description | This work is licensed under a Creative Commons Attribution 4.0 International License. | en_US |
dc.description.abstract | Background: Individuals with autism spectrum disorder (ASD) show elevated levels of motor variability that are associated with clinical outcomes. Cortical–cerebellar networks involved in visuomotor control have been implicated in postmortem and anatomical imaging studies of ASD. However, the extent to which these networks show intrinsic functional alterations in patients, and the relationship between intrinsic functional properties of cortical–cerebellar networks and visuomotor impairments in ASD have not yet been clarified.Methods: We examined the amplitude of low-frequency fluctuation (ALFF) of cortical and cerebellar brain regions during resting-state functional MRI (rs-fMRI) in 23 individuals with ASD and 16 typically developing (TD) controls. Regions of interest (ROIs) with ALFF values significantly associated with motor variability were identified for for patients and controls respectively, and their functional connectivity (FC) to each other and to the rest of the brain was examined.Results: For TD controls, greater ALFF in bilateral cerebellar crus I, left superior temporal gyrus, left inferior frontal gyrus, right supramarginal gyrus, and left angular gyrus each were associated with greater visuomotor variability. Greater ALFF in cerebellar lobule VIII was associated with less visuomotor variability. For individuals with ASD, greater ALFF in right calcarine cortex, right middle temporal gyrus (including MT/V5), left Heschl's gyrus, left post-central gyrus, right pre-central gyrus, and left precuneus was related to greater visuomotor variability. Greater ALFF in cerebellar vermis VI was associated with less visuomotor variability. Individuals with ASD and TD controls did not show differences in ALFF for any of these ROIs. Individuals with ASD showed greater posterior cerebellar connectivity with occipital and parietal cortices relative to TD controls, and reduced FC within cerebellum and between lateral cerebellum and pre-frontal and other regions of association cortex.Conclusion: Together, these findings suggest that increased resting oscillations within visuomotor networks in ASD are associated with more severe deficits in controlling variability during precision visuomotor behavior. Differences between individuals with ASD and TD controls in the topography of networks showing relationships to visuomotor behavior suggest atypical patterns of cerebellar–cortical specialization and connectivity in ASD that underlies previously documented visuomotor deficits. | en_US |
dc.description.sponsorship | NIMH K23 (MH092696) | en_US |
dc.description.sponsorship | NIMH R01 (MH112734) | en_US |
dc.description.sponsorship | Kansas Center for Autism Research and Training (K-CART) Research Investment Council Strategic Initiative Grant | en_US |
dc.description.sponsorship | NICHD U54 Kansas Intellectual and Developmental Disabilities Research Center Award (U54HD090216) | en_US |
dc.description.sponsorship | National Natural Science Foundation of China Award (grant no. 81371527) | en_US |
dc.publisher | Frontiers Media | en_US |
dc.rights | © 2019 Wang, Wang, Sweeney, Gong, Lui and Mosconi. | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | en_US |
dc.subject | Autism spectrum disorder | en_US |
dc.subject | Resting-state functional MRI | en_US |
dc.subject | Visuomotor control | en_US |
dc.subject | Precision grip | en_US |
dc.subject | Cortical–cerebellar connectivity | en_US |
dc.subject | Amplitude of low-frequency fluctuations | en_US |
dc.subject | Functional connectivity | en_US |
dc.title | Resting-State Brain Network Dysfunctions Associated With Visuomotor Impairments in Autism Spectrum Disorder | en_US |
dc.type | Article | en_US |
kusw.kuauthor | Mosconi, Matthew W. | |
kusw.kudepartment | Schiefelbusch Institute for Life Span Studies | en_US |
kusw.kudepartment | Clinical Child Psychology Program | en_US |
kusw.oanotes | Per Sherpa Romeo 11/19/2020:Frontiers in Integrative Neuroscience
[Open panel below]Publication Information
TitleFrontiers in Integrative Neuroscience [English]
ISSNsElectronic: 1662-5145
URLhttp://frontiersin.org/Integrative_Neuroscience
PublishersFrontiers Media [Commercial Publisher]
DOAJ Listinghttps://doaj.org/toc/1662-5145
Requires APCYes [Data provided by DOAJ]
[Open panel below]Publisher Policy
Open Access pathways permitted by this journal's policy are listed below by article version. Click on a pathway for a more detailed view.Published Version
NoneCC BYPMC
Any Repository, Journal Website, +1
OA PublishingThis pathway includes Open Access publishing
EmbargoNo Embargo
LicenceCC BY 4.0
Copyright OwnerAuthors
Publisher DepositPubMed Central
Location
Any Repository
Named Repository (PubMed Central)
Journal Website
Conditions
Published source must be acknowledged with citation
Copyright must be acknowledged
First publication by Frontiers Media must be acknowledged
Must link to published article | en_US |
dc.identifier.doi | 10.3389/fnint.2019.00017 | en_US |
kusw.oaversion | Scholarly/refereed, publisher version | en_US |
kusw.oapolicy | This item meets KU Open Access policy criteria. | en_US |
dc.identifier.pmid | PMC6554427 | en_US |
dc.rights.accessrights | openAccess | en_US |