Show simple item record

dc.contributor.advisorAhmadi, Reza
dc.contributor.advisorKulkarni, Parsad
dc.contributor.authorJafarishiadeh, Seyyedmahdi
dc.date.accessioned2020-03-29T19:14:43Z
dc.date.available2020-03-29T19:14:43Z
dc.date.issued2019-12-31
dc.date.submitted2019
dc.identifier.otherhttp://dissertations.umi.com/ku:16934
dc.identifier.urihttp://hdl.handle.net/1808/30239
dc.description.abstractTrends toward large-scale integration and the high-power application of green energy resources necessitate the advent of efficient power converter topologies, multilevel converters. Multilevel inverters are effective solutions for high power and medium voltage DC-to-AC conversion due to their higher efficiency, provision of system redundancy, and generation of near-sinusoidal output voltage waveform. Recently, modular multilevel converter (MMC) has become increasingly attractive. To improve the harmonic profile of the output voltage, there is the need to increase the number of output voltage levels. However, this would require increasing the number of submodules (SMs) and power semi-conductor devices and their associated gate driver and protection circuitry, resulting in the overall multilevel converter to be complex and expensive. Specifically, the need for large number of bulky capacitors in SMs of conventional MMC is seen as a major obstacle. This work proposes an MMC-based multilevel converter that provides the same output voltage as conventional MMC but has reduced number of bulky capacitors. This is achieved by introduction of an extra middle arm to the conventional MMC. Due to similar dynamic equations of the proposed converter with conventional MMC, several previously developed control methods for voltage balancing in the literature for conventional MMCs are applicable to the proposed MMC with minimal effort. Comparative loss analysis of the conventional MMC and the proposed multilevel converter under different power factors and modulation indexes illustrates the lower switching loss of proposed MMC. In addition, a new voltage balancing technique based on carrier-disposition pulse width modulation for modular multilevel converter is proposed. The second part of this work focuses on an improved control of MMC-based high-power DC/DC converters. Medium-voltage DC (MVDC) and high-voltage DC (HVDC) grids have been the focus of numerous research studies in recent years due to their increasing applications in rapidly growing grid-connected renewable energy systems, such as wind and solar farms. MMC-based DC/DC converters are employed for collecting power from renewable energy sources. Among various developed DC/DC converter topologies, MMC-based DC/DC converter with medium-frequency (MF) transformer is a valuable topology due to its advantages. Specifically, they offer a significant reduction in the size of the MMC arm capacitors along with the ac-link transformer and arm inductors due to the ac-link transformer operating at medium frequencies. As such, this work focuses on improving the control of isolated MMC-based DC/DC (IMMDC) converters. The single phase shift (SPS) control is a popular method in IMMDC converter to control the power transfer. This work proposes conjoined phase shift-amplitude ratio index (PSAR) control that considers amplitude ratio indexes of MMC legs of MF transformer’s secondary side as additional control variables. Compared with SPS control, PSAR control not only provides wider transmission power range and enhances operation flexibility of converter, but also reduces current stress of medium-frequency transformer and power switches of MMCs. An algorithm is developed for simple implementation of the PSAR control to work at the least current stress operating point. Hardware-in-the-loop results confirm the theoretical outcomes of the proposed control method.
dc.format.extent111 pages
dc.language.isoen
dc.publisherUniversity of Kansas
dc.rightsCopyright held by the author.
dc.subjectElectrical engineering
dc.titleNew Topology and Improved Control of Modular Multilevel Based Converters
dc.typeDissertation
dc.thesis.degreeDisciplineElectrical Engineering & Computer Science
dc.thesis.degreeLevelPh.D.
dc.identifier.orcid
dc.rights.accessrightsopenAccess


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record