KUKU

KU ScholarWorks

  • myKU
  • Email
  • Enroll & Pay
  • KU Directory
    • Login
    View Item 
    •   KU ScholarWorks
    • Dissertations and Theses
    • Theses
    • View Item
    •   KU ScholarWorks
    • Dissertations and Theses
    • Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Receptor for advanced glycation endproducts (RAGE) modulates glyoxalase-1 enzyme activity in mouse models.

    Thumbnail
    View/Open
    Gore_ku_0099M_16566_DATA_1.pdf (1.334Mb)
    Issue Date
    2019-12-31
    Author
    Gore, Smruti Satishchandra
    Publisher
    University of Kansas
    Format
    68 pages
    Type
    Thesis
    Degree Level
    M.S.
    Discipline
    Pharmacology & Toxicology
    Rights
    Copyright held by the author.
    Metadata
    Show full item record
    Abstract
    Alzheimer’s disease (AD) is the most common cause of dementia in the world. AD is characterized pathologically by the presence of Amyloid-β (Aβ) plaques and tau neurofibrillary tangles (NFTs). Advanced glycation endproducts (AGEs), which are derived from alpha-dicarbonyls such as methylglyoxal (MG), form endogenously with physiological aging. These AGEs have been observed to co-localize with both the plaques and NFTs in AD patients’ brains. Receptor for advanced glycation endproducts (RAGE) has been implicated in the pathogenesis of AD. However, the exact mechanism by which RAGE contributes to AD pathology is only partially known. Glyoxalase-1(GLO1) is an important enzyme involved in the detoxification of precursors of AGEs, which serve as the highly reactive primary ligands for RAGE. GLO1 is found to be downregulated in the brains of advanced stage AD patients whereas RAGE is overexpressed in such brains. Aging is associated with increased generation and deposition of AGEs, resulting from non-enzymatic glycation (or oxidation) of proteins and lipids. Higher AGE formation is associated with a multitude of cellular and synaptic disturbances. Thus, to see the direct effect of age on enzyme activity, we first performed a study of wild type (WT) animals from 3 to 30 months and found that beyond 12 months of age, GLO1 activity significantly decreases. This shows that aging can be a major factor contributing to AD pathology through the downregulation of GLO1 activity. For uniformity, we used 12 months old mice for all further studies. In order to investigate whether RAGE directly modulates GLO1 enzyme activity and protein expression, we used previously generated multiple transgenic (Tg) non-AD mouse models by either genetic deletion of RAGE (RAGE knockout) or the introduction of signal deficient dominant-negative mutant RAGE (DNRAGE). They were, in the past, characterized for RAGE and subsequent RAGE-mediated signal transduction in our lab. GLO1 enzyme activity was measured spectrophotometrically while GLO1 protein expression was determined with western blotting. The Tg mice displayed either a) an increase in GLO1 enzyme activity, and/or b) an increase in GLO1 protein expression when compared with age-matched WT controls. Global RAGE knockout (RO) and neuronal RAGE knockout (nRKO) mice showed significantly higher GLO1 enzyme activity compared to WT controls. RO mice showed a significant increase in the protein expression but nRKO mice did not. Similarly, the mice with DNRAGE targeted to cortical neurons (neuronal DNRAGE) and microglia (DNMSR) exhibited an increase in GLO1 enzyme activity compared with WT mice but showed no significant change in protein expression. This differential effect on protein expression can be due to the difference in post-translational modification such as disulfide bridge formation or presence of GLO1 variations. It could also be the effect of normal or higher GLO1 activity in non-neuronal or microglial cells. Given the clear modulation of GLO1 by RAGE variation, we performed the GLO1 enzyme activity and expression assays in Tg mice modeling amyloid plaque development by expressing a mutant form of human APP leading to overproduction of Aβ (mAPP) to see if similar effects are observed in a mouse model showing AD-like pathology. We also crossed these mAPP mice with RO mice to develop RAGE-deficient mAPP mice (mAPP/RO). The mAPP mice showed a significant reduction in both GLO1 enzyme activity and protein expression. mAPP/RO mice and RO mice showed higher GLO1 activity and protein expression compared to mAPP mice. These findings highlight that RAGE-dependent signaling downregulates GLO1 enzyme activity and the deletion of RAGE protects against this decrease. Also, it supports the hypothesis that loss of RAGE-mediated signaling leads to an increase in GLO1 activity, whereas specific APP mutation (and Aβ overproduction) contributes to the decrease in GLO1 activity. Taken together, these data show that RAGE functions as an active modulator of GLO1 enzyme activity, thereby providing new insights into a mechanism by which the RAGE-dependent signaling cascade contributes to the pathogenesis of AD. Thus, RAGE deletion or blockade of RAGE signaling may be a potential target for developing treatments for preventing the progression of AD and related degenerative disorders through modulation of GLO1 function.
    URI
    http://hdl.handle.net/1808/30198
    Collections
    • Pharmacy Dissertations and Theses [118]
    • Theses [3828]

    Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.


    We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.


    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    Browse

    All of KU ScholarWorksCommunities & CollectionsThis Collection

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    The University of Kansas
      Contact KU ScholarWorks
    Lawrence, KS | Maps
     
    • Academics
    • Admission
    • Alumni
    • Athletics
    • Campuses
    • Giving
    • Jobs

    The University of Kansas prohibits discrimination on the basis of race, color, ethnicity, religion, sex, national origin, age, ancestry, disability, status as a veteran, sexual orientation, marital status, parental status, gender identity, gender expression and genetic information in the University’s programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Director of the Office of Institutional Opportunity and Access, IOA@ku.edu, 1246 W. Campus Road, Room 153A, Lawrence, KS, 66045, (785)864-6414, 711 TTY.

     Contact KU
    Lawrence, KS | Maps