KUKU

KU ScholarWorks

  • myKU
  • Email
  • Enroll & Pay
  • KU Directory
    • Login
    View Item 
    •   KU ScholarWorks
    • Engineering
    • Infrastructure Research Institute Scholarly Works
    • View Item
    •   KU ScholarWorks
    • Engineering
    • Infrastructure Research Institute Scholarly Works
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Low-Cracking High-Performance Concrete (LC-HPC) for Durable Bridge Decks

    Thumbnail
    View/Open
    SP-336-7.pdf (1.260Mb)
    Issue Date
    2017-10
    Author
    Darwin, David
    Khajehdehi, Rouzbeh
    Feng, Muzai
    Lafikes, James
    Ibrahim, Eman
    O’Reilly, Matthew
    Publisher
    American Concrete Institute
    Type
    Technical Report
    Published Version
    https://iri.ku.edu/papers
    Metadata
    Show full item record
    Abstract
    The goal of this study was to implement cost-effective techniques for improving bridge deck service life through the reduction of cracking. Work was performed both in the laboratory and in the field, resulting in the creation of Low-Cracking High-Performance Concrete (LC-HPC) specifications that minimize cracking through the use of low slump, low paste content, moderate compressive strength, concrete temperature control, good consolidation, minimum finishing, and extended curing. This paper documents the performance of 17 decks constructed with LC-HPC specifications and 13 matching control bridge decks based on crack surveys. The LC-HPC bridge decks exhibit less cracking than the matching control decks in the vast majority of cases. Only two LC-HPC bridge decks have higher overall crack densities than their control decks, which are the two best performing control decks in the program, and the differences are small. The majority of the cracks are transverse and run parallel to the top layer of the deck reinforcement. The results of this study demonstrate the positive effects of reduced cement paste contents, concrete temperature control, limitations on or de-emphasis of maximum concrete compressive strength, limitations on maximum slump, the use of good consolidation, minimizing finishing operations, and application of curing shortly after finishing and for an extended time on minimizing cracking in bridge decks.
    URI
    http://hdl.handle.net/1808/30007
    Collections
    • Infrastructure Research Institute Scholarly Works [327]
    Citation
    Darwin, D., Khajehdehi, R., Feng, M., Lafikes, J., Ibrahim, E., and O’Reilly, M., “Low-Cracking High-Performance Concrete (LC-HPC) for Durable Bridge Decks,” Cracking and Durability in Sustainable Concretes, American Concrete Institute Symposium Vol., SP-336, R. Leistikow and K. W. Kramer, ed., 2019, pp. 101-116.

    Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.


    We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.


    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    Browse

    All of KU ScholarWorksCommunities & CollectionsThis Collection

    My Account

    Login

    Statistics

    View Usage Statistics

    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    The University of Kansas
      Contact KU ScholarWorks
    Lawrence, KS | Maps
     
    • Academics
    • Admission
    • Alumni
    • Athletics
    • Campuses
    • Giving
    • Jobs

    The University of Kansas prohibits discrimination on the basis of race, color, ethnicity, religion, sex, national origin, age, ancestry, disability, status as a veteran, sexual orientation, marital status, parental status, gender identity, gender expression and genetic information in the University’s programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Director of the Office of Institutional Opportunity and Access, IOA@ku.edu, 1246 W. Campus Road, Room 153A, Lawrence, KS, 66045, (785)864-6414, 711 TTY.

     Contact KU
    Lawrence, KS | Maps