KUKU

KU ScholarWorks

  • myKU
  • Email
  • Enroll & Pay
  • KU Directory
    • Login
    View Item 
    •   KU ScholarWorks
    • Dissertations and Theses
    • Dissertations
    • View Item
    •   KU ScholarWorks
    • Dissertations and Theses
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Use of Task-Relevant Spoken Word Stimuli in an Auditory Brain-Computer Interface

    Thumbnail
    View/Open
    Burnison_ku_0099D_15145_DATA_1.pdf (15.61Mb)
    Issue Date
    2017-05-31
    Author
    Burnison, Jeremy Dean
    Publisher
    University of Kansas
    Format
    161 pages
    Type
    Dissertation
    Degree Level
    Ph.D.
    Discipline
    Neurosciences
    Rights
    Copyright held by the author.
    Metadata
    Show full item record
    Abstract
    Auditory brain-computer interfaces (aBCI) may be an effective solution for communication in cases of severely locked-in, late stage ALS (Lou Gehrig’s disease) and upper spinal cord injury patients who are otherwise not candidates for implanted electrodes. Feasibility of auditory BCI has been shown for both healthy participants, (Hill et al., 2004), and impaired populations (Sellers and Donchin, 2006). (Hill et al., 2014) found similar BCI performance in healthy participants and those with locked-in syndrome in a paradigm comparing words to pure tone stimuli. Additional BCI research has explored variations to augment P300 signals for use in speller paradigms, including more meaningful auditory stimuli (Klobassa et al., 2009; Furdea et al., 2009; Simon et al., 2014). It has been recognized in these studies that end users would much prefer natural sounds over a repeated tone stimulus. All of these systems required an association of sound with target stimuli, typically enforced by a visual support matrix. These systems would not be usable by the target end users of an auditory BCI. At- tempts to remove the need for visual referencing by investigating a BCI system with serial presentation of spoken letter streams as stimuli (Hoehne and Tangermann, 2014) or spoken words (Ferracuti et al., 2013) has met with limited success but presents a potential high speed communication solutions. The present study highlights a method of using BCI task relevant spoken word stimuli to eliminate visually presented references. By utilizing spoken word stimuli, a BCI system could utilize a range of stimuli equivalent to the size of the users vocabulary and provide faster communication out- put than spelling systems. As a control, spoken word stimuli that have no task specific relevance are also tested. Stimuli audio-spatial cues have shown significant improvements in aBCI performance (Käthner et al., 2013; Schreuder et al., 2011). The present study specifically evaluates the potential improvements to BCI performance of semantic and audio-spatial relevance by eliciting auditory oddball P300 responses to task relevant directional stimuli (spoken words: ‘front’, ‘back’, ‘left’, ‘right’). Participants completed several trials of a motivational game with directionally relevant targets over two experimental sessions. Offline analysis of training data was accomplished to evaluate the impact of stimulus characteristics on BCI performance. Questionnaire results on workload, motivation and system usability accurately reflected participant’s BCI performance. A behavioral button press study was utilized to further investigate the influence of spatial cues used in the paradigm, but also highlighted differences in the semantic relevance of the stimuli. Behavioral results correlated with BCI performance. The results of this study indicate task relevant stimuli are a viable option for eliminating artificial and visual stimulus references. This study’s results highlight several considerations for future auditory BCI studies, including: classifier selection, hearing threshold importance, aid of behavioral correlates to BCI performance and use of spatially separated spoken word stimuli.
    URI
    http://hdl.handle.net/1808/26926
    Collections
    • Pharmacy Dissertations and Theses [118]
    • Dissertations [4321]

    Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.


    We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.


    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    Browse

    All of KU ScholarWorksCommunities & CollectionsThis Collection

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    The University of Kansas
      Contact KU ScholarWorks
    Lawrence, KS | Maps
     
    • Academics
    • Admission
    • Alumni
    • Athletics
    • Campuses
    • Giving
    • Jobs

    The University of Kansas prohibits discrimination on the basis of race, color, ethnicity, religion, sex, national origin, age, ancestry, disability, status as a veteran, sexual orientation, marital status, parental status, gender identity, gender expression and genetic information in the University’s programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Director of the Office of Institutional Opportunity and Access, IOA@ku.edu, 1246 W. Campus Road, Room 153A, Lawrence, KS, 66045, (785)864-6414, 711 TTY.

     Contact KU
    Lawrence, KS | Maps