Centromere-associated meiotic drive and female fitness variation in Mimulus

View/ Open
Issue Date
2015-03Author
Fishman, Lila
Kelly, John K.
Publisher
Wiley
Type
Article
Article Version
Scholarly/refereed, publisher version
Metadata
Show full item recordAbstract
Female meiotic drive, in which chromosomal variants preferentially segregate to the egg pole during asymmetric female meiosis, is a theoretically pervasive but still mysterious form of selfish evolution. Like other selfish genetic elements, driving chromosomes may be maintained as balanced polymorphisms by pleiotropic or linked fitness costs. A centromere-associated driver (D) with a ~58:42 female-specific transmission advantage occurs at intermediate frequency (32–40%) in the Iron Mountain population of the yellow monkeyflower, Mimulus guttatus. Previously determined male fertility costs are sufficient to prevent the fixation of D, but predict a higher equilibrium frequency. To better understand the dynamics and effects of D, we developed a new population genetic model and measured genotype-specific lifetime female fitness in the wild. In three of four years, and across all years, D imposed significant recessive seedset costs, most likely due to hitchhiking by deleterious mutations. With both male and female costs as measured, and 58:42 drive, our model predicts an equilibrium frequency of D (38%) very close to the observed value. Thus, D represents a rare selfish genetic element whose local population genetic dynamics have been fully parameterized, and the observation of equilibrium sets the stage for investigations of coevolution with suppressors.
Description
This is the peer reviewed version of the following article: Fishman, L. and Kelly, J. K. (2015), Centromere‐associated meiotic drive and female fitness variation in Mimulus. Evolution, 69: 1208-1218. doi:10.1111/evo.12661, which has been published in final form at http://doi.org/10.1111/evo.12661. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.
Collections
Citation
Fishman, L., & Kelly, J. K. (2015). Centromere-associated meiotic drive and female fitness variation in Mimulus. Evolution; International Journal of Organic Evolution, 69(5), 1208–1218. http://doi.org/10.1111/evo.12661
Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.