Show simple item record

dc.contributor.authorWolf, Sebastian
dc.contributor.authorKeenan, Trevor F.
dc.contributor.authorFisher, Joshua B.
dc.contributor.authorBaldocchi, Dennis D.
dc.contributor.authorDesai, Ankur R.
dc.contributor.authorRichardson, Andrew D.
dc.contributor.authorScott, Russell L.
dc.contributor.authorLaw, Beverly E.
dc.contributor.authorLitvak, Marcy E.
dc.contributor.authorBrunsell, Nathaniel A.
dc.contributor.authorPeters, Wouter
dc.contributor.authorvan der Laan-Luijkx, Ingrid T.
dc.date.accessioned2017-11-03T16:40:46Z
dc.date.available2017-11-03T16:40:46Z
dc.date.issued2016-05-24
dc.identifier.citationWolf, S., Keenan, T. F., Fisher, J. B., Baldocchi, D. D., Desai, A. R., Richardson, A. D., … van der Laan-Luijkx, I. T. (2016). Warm spring reduced carbon cycle impact of the 2012 US summer drought. Proceedings of the National Academy of Sciences of the United States of America, 113(21), 5880–5885. http://doi.org/10.1073/pnas.1519620113en_US
dc.identifier.urihttp://hdl.handle.net/1808/25250
dc.descriptionCarbon uptake by terrestrial ecosystems mitigates the impact of anthropogenic fossil fuel emissions on atmospheric CO2 concentrations, but the strength of this carbon sink is highly sensitive to large-scale extreme climate events. In 2012, the United States experienced the most severe drought since the Dust Bowl period, along with the warmest spring on record. Here, we quantify the impact of this climate anomaly on the carbon cycle. Our results show that warming-induced earlier vegetation activity increased spring carbon uptake, and thus compensated for reduced carbon uptake during the summer drought in 2012. This compensation, however, came at the cost of soil moisture depletion from increased spring evapotranspiration that likely enhanced summer heating through land-atmosphere coupling.en_US
dc.description.abstractThe global terrestrial carbon sink offsets one-third of the world’s fossil fuel emissions, but the strength of this sink is highly sensitive to large-scale extreme events. In 2012, the contiguous United States experienced exceptionally warm temperatures and the most severe drought since the Dust Bowl era of the 1930s, resulting in substantial economic damage. It is crucial to understand the dynamics of such events because warmer temperatures and a higher prevalence of drought are projected in a changing climate. Here, we combine an extensive network of direct ecosystem flux measurements with satellite remote sensing and atmospheric inverse modeling to quantify the impact of the warmer spring and summer drought on biosphere-atmosphere carbon and water exchange in 2012. We consistently find that earlier vegetation activity increased spring carbon uptake and compensated for the reduced uptake during the summer drought, which mitigated the impact on net annual carbon uptake. The early phenological development in the Eastern Temperate Forests played a major role for the continental-scale carbon balance in 2012. The warm spring also depleted soil water resources earlier, and thus exacerbated water limitations during summer. Our results show that the detrimental effects of severe summer drought on ecosystem carbon storage can be mitigated by warming-induced increases in spring carbon uptake. However, the results also suggest that the positive carbon cycle effect of warm spring enhances water limitations and can increase summer heating through biosphere–atmosphere feedbacks.en_US
dc.publisherNational Academy of Sciencesen_US
dc.rights© The Authors 2016en_US
dc.subjectSeasonal climate anomaliesen_US
dc.subjectCarbon uptakeen_US
dc.subjectEcosystem fluxesen_US
dc.subjectBiosphere-atmosphere feedbacksen_US
dc.subjectEddy covarianceen_US
dc.titleWarm spring reduced carbon cycle impact of the 2012 US summer droughten_US
dc.typeArticleen_US
kusw.kuauthorBrunsell, Nathaniel A.
kusw.kudepartmentGeography and Atmospheric Scienceen_US
dc.identifier.doi10.1073/pnas.1519620113en_US
kusw.oaversionScholarly/refereed, publisher versionen_US
kusw.oapolicyThis item meets KU Open Access policy criteria.en_US
dc.identifier.pmidPMC4889356en_US
dc.rights.accessrightsopenAccess


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record