Show simple item record

dc.contributor.authorChakraborty, Aishik
dc.contributor.authorMucci, Nicolas J.
dc.contributor.authorTan, Ming Li
dc.contributor.authorSteckley, Ashleigh
dc.contributor.authorZhang, Ti
dc.contributor.authorForrest, M. Laird
dc.contributor.authorDhar, Prajnaparamita
dc.date.accessioned2017-06-20T17:24:42Z
dc.date.available2017-06-20T17:24:42Z
dc.date.issued2015-05-12
dc.identifier.citationChakraborty, A., Mucci, N. J., Tan, M. L., Steckley, A., Zhang, T., Forrest, M. L., & Dhar, P. (2015). Phospholipid Composition Modulates Carbon Nanodiamond-Induced Alterations in Phospholipid Domain Formation. Langmuir : The ACS Journal of Surfaces and Colloids, 31(18), 5093–5104. http://doi.org/10.1021/la504923jen_US
dc.identifier.urihttp://hdl.handle.net/1808/24557
dc.descriptionThis document is the Accepted Manuscript version of a Published Work that appeared in final form in Langmuir, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://doi.org/10.1021/la504923j.en_US
dc.description.abstractThe focus of this work is to elucidate how phospholipid composition can modulate lipid nanoparticle interactions in phospholipid monolayer systems. We report on alterations in lipid domain formation induced by anionically engineered carbon nanodiamonds (ECNs) as a function of lipid headgroup charge and alkyl chain saturation. Using surface pressure vs area isotherms, monolayer compressibility, and fluorescence microscopy, we found that anionic ECNs induced domain shape alterations in zwitterionic phosphatidylcholine lipids, irrespective of the lipid alkyl chain saturation, even when the surface pressure vs area isotherms did not show any significant changes. Bean-shaped structures characteristic of dipalmitoylphosphatidylcholine (DPPC) were converted to multilobed, fractal, or spiral domains as a result of exposure to ECNs, indicating that ECNs lower the line tension between domains in the case of zwitterionic lipids. For membrane systems containing anionic phospholipids, ECN-induced changes in domain packing were related to the electrostatic interactions between the anionic ECNs and the anionic lipid headgroups, even when zwitterionic lipids are present in excess. By comparing the measured size distributions with our recently developed theory derived by minimizing the free energy associated with the domain energy and mixing entropy, we found that the change in line tension induced by anionic ECNs is dominated by the charge in the condensed lipid domains. Atomic force microscopy images of the transferred anionic films confirm that the location of the anionic ECNs in the lipid monolayers is also modulated by the charge on the condensed lipid domains. Because biological membranes such as lung surfactants contain both saturated and unsaturated phospholipids with different lipid headgroup charges, our results suggest that when studying potential adverse effects of nanoparticles on biological systems the role of lipid compositions cannot be neglected.en_US
dc.publisherAmerican Chemical Societyen_US
dc.titlePhospholipid Composition Modulates Carbon Nanodiamond-Induced Alterations in Phospholipid Domain Formationen_US
dc.typeArticleen_US
kusw.kuauthorChakraborty, Aishik
kusw.kuauthorMucci, Nicolas J.
kusw.kuauthorTan, Ming Li
kusw.kuauthorSteckley, Ashleigh
kusw.kuauthorZhang, Ti
kusw.kuauthorForrest, M. Laird
kusw.kuauthorDhar, Prajnaparamita
kusw.kudepartmentChemical and Petroleum Engineeringen_US
dc.identifier.doi10.1021/la504923jen_US
kusw.oaversionScholarly/refereed, author accepted manuscripten_US
kusw.oapolicyThis item meets KU Open Access policy criteria.en_US
dc.identifier.pmidPMC4702515en_US
dc.rights.accessrightsopenAccess


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record