Fluorescence quenching studies of structure and dynamics in calmodulin-eNOS complexes

View/ Open
Issue Date
2015-05-08Author
Arnett, David C.
Persechini, Anthony
Tran, Quang-Kim
Black, D. J.
Johnson, Carey K.
Publisher
Wiley
Type
Article
Article Version
Scholarly/refereed, author accepted manuscript
Metadata
Show full item recordAbstract
Activation of endothelial nitric oxide synthase (eNOS) by calmodulin (CaM) facilitates formation of a sequence of conformational states that is not well understood. Fluorescence decays of fluorescently labeled CaM bound to eNOS reveal four distinct conformational states and single-molecule fluorescence trajectories show multiple fluorescence states with transitions between states occurring on time scales of milliseconds to seconds. A model is proposed relating fluorescence quenching states to enzyme conformations. Specifically, we propose that the most highly quenched state corresponds to CaM docked to an oxygenase domain of the enzyme. In single-molecule trajectories, this state occurs with time lags consistent with the oxygenase activity of the enzyme.
Description
This is the peer reviewed version of the following article: Arnett David C.,Persechini Anthony,Tran Quang-Kim,Black D.J. and Johnson Carey K.(2015), Fluorescence quenching studies of structure and dynamics in calmodulin–eNOS complexes, FEBS Letters, 589, doi: 10.1016/j.febslet.2015.03.035, which has been published in final form at http://doi.org/10.1016/j.febslet.2015.03.035. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.
Collections
Citation
Arnett David C.,Persechini Anthony,Tran Quang-Kim,Black D.J. and Johnson Carey K.(2015), Fluorescence quenching studies of structure and dynamics in calmodulin–eNOS complexes, FEBS Letters, 589, doi: 10.1016/j.febslet.2015.03.035
Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.