Metal-Catalyzed Oxidation of Protein Methionine Residues in Human Parathyroid Hormone (1-34): Formation of Homocysteine and a Novel Methionine-Dependent Hydrolysis Reaction

View/ Open
Issue Date
2013-02-04Author
Mozziconacci, Olivier
Ji, Junyan A.
Wang, Y. John
Schöneich, Christian
Publisher
American Chemical Society
Type
Article
Article Version
Scholarly/refereed, author accepted manuscript
Rights
This document is the Accepted Manuscript version of a Published Work that appeared in final form in Molecular Pharmaceutics, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://doi.org/10.1021/mp300563m.
Metadata
Show full item recordAbstract
The oxidation of PTH(1-34) catalyzed by ferrous ethylenediaminetetraacetic acid (EDTA) is site-specific. The oxidation of PTH(1-34) is localized primarily to the residues Met[8] and His[9]. Beyond the transformation of Met[8] and His[9] into methionine sulfoxide and 2-oxo-histidine, respectively, we observed a hydrolytic cleavage between Met[8] and His[9]. This hydrolysis requires the presence of FeII and oxygen and can be prevented by diethylenetriaminepentaacetic acid (DTPA) and phosphate buffer. Conditions leading to this site-specific hydrolysis also promote the transformation of Met[8] into homocysteine, indicating that the hydrolysis and transformation of homocysteine may proceed through a common intermediate.
Collections
Citation
Mozziconacci, O., Ji, J. A., Wang, Y. J., & Schöneich, C. (2013). Metal-Catalyzed Oxidation of Protein Methionine Residues in Human Parathyroid Hormone (1-34): Formation of Homocysteine and a Novel Methionine-Dependent Hydrolysis Reaction. Molecular Pharmaceutics, 10(2), 739–755. http://doi.org/10.1021/mp300563m
Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.