KUKU

KU ScholarWorks

  • myKU
  • Email
  • Enroll & Pay
  • KU Directory
    • Login
    View Item 
    •   KU ScholarWorks
    • Pharmaceutical Chemistry
    • Pharmaceutical Chemistry Scholarly Works
    • View Item
    •   KU ScholarWorks
    • Pharmaceutical Chemistry
    • Pharmaceutical Chemistry Scholarly Works
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Mapping Site-Specific Changes that Affect Stability of the NTerminal Domain of Calmodulin

    Thumbnail
    View/Open
    Krause_2012.pdf (2.847Mb)
    Issue Date
    2012-04-02
    Author
    Krause, Mary Elizabeth
    Martin, Talia Thresa
    Laurence, Jennifer S.
    Publisher
    American Chemical Society
    Type
    Article
    Article Version
    Scholarly/refereed, author accepted manuscript
    Rights
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in Molecular Pharmaceutics, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://doi.org/10.1021/mp2004109.
    Metadata
    Show full item record
    Abstract
    Biophysical tools have been invaluable in formulating therapeutic proteins. These tools characterize protein stability rapidly in a variety of solution conditions, but in general, the techniques lack the ability to discern site-specific information to probe how solution environment acts to stabilize or destabilize the protein. NMR spectroscopy can provide site-specific information about subtle structural changes of a protein under different conditions, enabling one to assess the mechanism of protein stabilization. In this study, NMR was employed to detect structural perturbations at individual residues as a result of altering pH and ionic strength. The N-terminal domain of calmodulin (N-CaM) was used as a model system, and the 1H-15N heteronuclear single quantum coherence (HSQC) experiment was used to investigate effects of pH and ionic strength on individual residues. NMR analysis revealed that different solution conditions affect individual residues differently, even when the amino acid sequence and structure are highly similar. This study shows that addition of NMR to the formulation toolbox has the ability to extend understanding of the relationship between site-specific changes and overall protein stability.
    URI
    http://hdl.handle.net/1808/24058
    DOI
    https://doi.org/10.1021/mp2004109
    Collections
    • Pharmaceutical Chemistry Scholarly Works [340]
    Citation
    Krause, M. E., Martin, T. T., & Laurence, J. S. (2012). Mapping Site-Specific Changes that Affect Stability of the N-Terminal Domain of Calmodulin. Molecular Pharmaceutics, 9(4), 734–743. http://doi.org/10.1021/mp2004109

    Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.


    We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.


    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    Browse

    All of KU ScholarWorksCommunities & CollectionsThis Collection

    My Account

    Login

    Statistics

    View Usage Statistics

    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    The University of Kansas
      Contact KU ScholarWorks
    Lawrence, KS | Maps
     
    • Academics
    • Admission
    • Alumni
    • Athletics
    • Campuses
    • Giving
    • Jobs

    The University of Kansas prohibits discrimination on the basis of race, color, ethnicity, religion, sex, national origin, age, ancestry, disability, status as a veteran, sexual orientation, marital status, parental status, gender identity, gender expression and genetic information in the University’s programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Director of the Office of Institutional Opportunity and Access, IOA@ku.edu, 1246 W. Campus Road, Room 153A, Lawrence, KS, 66045, (785)864-6414, 711 TTY.

     Contact KU
    Lawrence, KS | Maps