KUKU

KU ScholarWorks

  • myKU
  • Email
  • Enroll & Pay
  • KU Directory
    • Login
    View Item 
    •   KU ScholarWorks
    • Dissertations and Theses
    • Dissertations
    • View Item
    •   KU ScholarWorks
    • Dissertations and Theses
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Engineered Nanomaterials for Targeted Imaging and Therapy

    Thumbnail
    View/Open
    Zhang_ku_0099D_13832_DATA_1.pdf (5.027Mb)
    Issue Date
    2015-05-31
    Author
    Zhang, Ti
    Publisher
    University of Kansas
    Format
    286 pages
    Type
    Dissertation
    Degree Level
    Ph.D.
    Discipline
    Pharmaceutical Chemistry
    Rights
    Copyright held by the author.
    Metadata
    Show full item record
    Abstract
    The early diagnosis of cancer can help direct the best treatment strategy and improve patients' survival. The unique and tunable properties of nanoparticles facilitate the development of diagnostic imaging tools for earlier diagnosis and disease staging, and they can provide fundamental information on the pathological process. Nanoparticle probes have demonstrated to have numerous advantages over single molecule-based contrast agents, such as tumor-targeted delivery via the enhanced permeability and retention (EPR) effect, prolonged systemic circulation times to enhance imaging contrast efficiency, and facile surface modification for specific applications. The first part of this dissertation focuses on the development of radiation- damaged nanodiamonds (DNDs), a type of carbon-based nanoparticles, for the detection of solid tumors using a photoacoustic (PA) imaging technique. In chapter 2 of this dissertation, DNDs are proposed as ideal optical contrast agents for PA imaging in biological tissues due to their low toxicity and high optical absorbance. A new DND with very high NIR absorption was synthesized by He+ ion beam irradiation. These DNDs produced a 71-fold higher PA signal on a molar basis than similarly dimensioned gold nanorods, which were considered the "gold" standard agent for PA contrast agents. In order to develop DNDs as a molecularly-targeted contrast agent for high resolution and phenotype-specific detection of breast cancer with PA imaging, in chapter 3, an anti- Human epidermal growth factor receptor-2 (HER2) peptide (KCCYSL) was conjugated to the surface of PEGylated DNDs. PA images demonstrated that DNDs accumulate in orthotopic HER2 positive tumors and completely delineated the entire tumor within 10 hours. Chapters 4 and 5 of this dissertation describe the development of a hyaluronic acid (HA) polymeric nanoparticle to deliver drugs for the locoregional treatment of head and neck squamous cell carcinoma (HNSCC). In chapter 4, a HA-pyropheophorbide a (PPa) conjugate was synthesized. The anti-cancer efficacy was improved compared to the intravenously administered PPa molecules, and it was demonstrated that it could be useful for in vivo locoregional photodynamic therapy of HNSCC. In chapter 5, a pH- tunable delivery platform of platinum-based anti-cancer drug was designed and synthesized to improve the therapeutic index. The systemic toxicity of cisplatin was significantly reduced due to the pH-controlled release of the active forms of Pt species. In chapter 6, a lanthanum label was non-covalently conjugated to HA polymer to track the in vivo bio-distribution of HA in HNSCC tumors and organs that are responsible for the elimination of nanoparticles. In the last chapter, an enzymatic N-deacetylation method was applied in the modification on HA. New synthetic routs were explored to prepare HA derivatives for anti-cancer drug delivery to meet specific needs with retained HA characteristics.
    URI
    http://hdl.handle.net/1808/23927
    Collections
    • Pharmaceutical Chemistry Dissertations and Theses [141]
    • Dissertations [4472]

    Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.


    We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.


    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    Browse

    All of KU ScholarWorksCommunities & CollectionsThis Collection

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    The University of Kansas
      Contact KU ScholarWorks
    Lawrence, KS | Maps
     
    • Academics
    • Admission
    • Alumni
    • Athletics
    • Campuses
    • Giving
    • Jobs

    The University of Kansas prohibits discrimination on the basis of race, color, ethnicity, religion, sex, national origin, age, ancestry, disability, status as a veteran, sexual orientation, marital status, parental status, gender identity, gender expression and genetic information in the University’s programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Director of the Office of Institutional Opportunity and Access, IOA@ku.edu, 1246 W. Campus Road, Room 153A, Lawrence, KS, 66045, (785)864-6414, 711 TTY.

     Contact KU
    Lawrence, KS | Maps