KUKU

KU ScholarWorks

  • myKU
  • Email
  • Enroll & Pay
  • KU Directory
    • Login
    View Item 
    •   KU ScholarWorks
    • Dissertations and Theses
    • Dissertations
    • View Item
    •   KU ScholarWorks
    • Dissertations and Theses
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Novologue Therapy Improves Mitochondrial Bioenergetics and Modulates Transcriptome Changes in Diabetic Sensory Neurons

    Thumbnail
    View/Open
    Ma_ku_0099D_14118_DATA_1.pdf (4.536Mb)
    Issue Date
    2015-05-31
    Author
    Ma, Jiacheng
    Publisher
    University of Kansas
    Format
    224 pages
    Type
    Dissertation
    Degree Level
    Ph.D.
    Discipline
    Pharmacology & Toxicology
    Rights
    Copyright held by the author.
    Metadata
    Show full item record
    Abstract
    Diabetic peripheral neuropathy (DPN) is a prevalent diabetic complication with scarce treatment options. Impaired neuronal mitochondrial bioenergetics contributes to the pathophysiologic progression of DPN and may be a focal point for disease management. We have demonstrated that modulating Hsp90 and Hsp70 with the small-molecule drug KU-32 ameliorates psychosensory, electrophysiologic, morphologic, and bioenergetic deficits of DPN in animal models of type 1 diabetes. The current study used mouse models of type 1 and type 2 diabetes to determine the relationship of changes in sensory neuron mitochondrial bioenergetics to the onset of and recovery from DPN. The onset of DPN showed a tight temporal correlation with a decrease in mitochondrial bioenergetics in a genetic model of type 2 diabetes. In contrast, sensory hypoalgesia developed 10 weeks before the occurrence of significant declines in sensory neuron mitochondrial bioenergetics in the type 1 model. KU-32 therapy improved mitochondrial bioenergetics in both the type 1 and type 2 models, and this tightly correlated with a decrease in DPN. Mechanistically, improved mitochondrial function following KU-32 therapy required Hsp70, since the drug was ineffective in diabetic Hsp70 knockout mice. Our data indicate that changes in mitochondrial bioenergetics may rapidly contribute to nerve dysfunction in type 2 diabetes, but not type 1 diabetes, and that modulating Hsp70 offers an effective approach toward correcting sensory neuron bioenergetic deficits and DPN in both type 1 and type 2 diabetes. We also sought to determine whether KU-596, an analogue of KU-32, offers similar therapeutic potential for treating DPN. Similar to KU-32, KU-596 improved psychosensory and bioenergetic deficits of DPN in a dose-dependent manner. However, the drug could not improve DPN in Hsp70 KO mice. Transcriptomic analysis using RNA sequencing (RNA-Seq) of DRG from diabetic wild type (WT) and Hsp70 KO mice revealed that KU-596 modulated transcription of genes involved in inflammatory pathways independently of Hsp70. In contrast, the effects of KU-596 on genes involved in the production of reactive oxygen species (ROS) are Hsp70-dependent. Our data indicate that modulation of molecular chaperones offers an effective approach towards correcting nerve dysfunction, and that normalization of inflammatory pathways alone by novologue therapy seems to be insufficient to reverse the deficits associated with insensate DPN in our model of type 1 diabetes.
    URI
    http://hdl.handle.net/1808/23926
    Collections
    • Dissertations [4454]
    • Pharmacy Dissertations and Theses [118]

    Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.


    We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.


    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    Browse

    All of KU ScholarWorksCommunities & CollectionsThis Collection

    My Account

    Login

    Statistics

    View Usage Statistics

    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    The University of Kansas
      Contact KU ScholarWorks
    Lawrence, KS | Maps
     
    • Academics
    • Admission
    • Alumni
    • Athletics
    • Campuses
    • Giving
    • Jobs

    The University of Kansas prohibits discrimination on the basis of race, color, ethnicity, religion, sex, national origin, age, ancestry, disability, status as a veteran, sexual orientation, marital status, parental status, gender identity, gender expression and genetic information in the University’s programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Director of the Office of Institutional Opportunity and Access, IOA@ku.edu, 1246 W. Campus Road, Room 153A, Lawrence, KS, 66045, (785)864-6414, 711 TTY.

     Contact KU
    Lawrence, KS | Maps