ATTENTION: The software behind KU ScholarWorks is being upgraded to a new version. Starting July 15th, users will not be able to log in to the system, add items, nor make any changes until the new version is in place at the end of July. Searching for articles and opening files will continue to work while the system is being updated. If you have any questions, please contact Marianne Reed at mreed@ku.edu .

Show simple item record

dc.contributor.authorLeto, Domenick F.
dc.contributor.authorChattopadhyay, Swarup
dc.contributor.authorDay, Victor W.
dc.contributor.authorJackson, Timothy A.
dc.date.accessioned2017-03-31T19:30:47Z
dc.date.available2017-03-31T19:30:47Z
dc.date.issued2013-07-19
dc.identifier.citationLeto, Domenick F., Swarup Chattopadhyay, Victor W. Day, and Timothy A. Jackson. "Reaction Landscape of a Pentadentate N5-Ligated MnII Complex with O2•− and H2O2 Includes Conversion of a Peroxomanganese(III) Adduct to a Bis(μ-oxo)dimanganese(III,IV) Species." Dalton Transactions 42.36 (2013): 13014.en_US
dc.identifier.urihttp://hdl.handle.net/1808/23527
dc.description.abstractHerein we describe the chemical reactivity of the mononuclear [MnII(N4py)(OTf)](OTf) (1) complex with hydrogen peroxide and superoxide. Treatment of 1 with one equivalent superoxide at −40 °C in MeCN formed the peroxomanganese(III) adduct, [MnIII(O2)(N4py)]+ (2) in ~30% yield. Complex 2 decayed over time and the formation of the bis(μ-oxo)dimanganese(III,IV) complex, [MnIIIMnIV(μ-O)2(N4py)2]3+ (3) was observed. When 2 was formed in higher yields (~60%) using excess superoxide, the [MnIII(O2)(N4py)]+ species thermally decayed to MnII species and 3 was formed in no greater than 10% yield. Treatment of [MnIII(O2)(N4py)]+ with 1 resulted in the formation of 3 in ~90% yield, relative to the concentration of [MnIII(O2)(N4py)]+. This reaction mimics the observed chemistry of Mn-ribonucleotide reductase, as it features the conversion of two MnII species to an oxo-bridged MnIIIMnIV compound using O2− as oxidant. Complex 3 was independently prepared through treatment of 1 with H2O2 and base at −40 °C. The geometric and electronic structures of 3 were probed using electronic absorption, electron paramagnetic resonance (EPR), magnetic circular dichroism (MCD), variable-temperature, variable-field MCD (VTVH-MCD), and X-ray absorption (XAS) spectroscopies. Complex 3 was structurally characterized by X-ray diffraction (XRD), which revealed the N4py ligand bound in an unusual tetradentate fashion.en_US
dc.publisherRoyal Society of Chemistryen_US
dc.titleReaction Landscape of a Pentadentate N5-Ligated MnII Complex with O2•− and H2O2 Includes Conversion of a Peroxomanganese(III) Adduct to a Bis(μ-oxo)dimanganese(III,IV) Speciesen_US
dc.typeArticleen_US
kusw.kuauthorJackson, Timothy A.
kusw.kudepartmentChemistryen_US
dc.identifier.doi10.1039/c3dt51277ken_US
kusw.oaversionScholarly/refereed, author accepted manuscripten_US
kusw.oapolicyThis item meets KU Open Access policy criteria.en_US
dc.rights.accessrightsopenAccess


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record