KUKU

KU ScholarWorks

  • myKU
  • Email
  • Enroll & Pay
  • KU Directory
    • Login
    View Item 
    •   KU ScholarWorks
    • Engineering
    • Infrastructure Research Institute Scholarly Works
    • View Item
    •   KU ScholarWorks
    • Engineering
    • Infrastructure Research Institute Scholarly Works
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Deformation Capacity and Strength of RC Frame Members with High-Strength Materials

    Thumbnail
    View/Open
    Lequesne_2016 (2.550Mb)
    Issue Date
    2016
    Author
    Cheng, Min-Yuan
    Wibowo, Leonardus S. B.
    Lequesne, Rémy D.
    Lepage, Andrés
    Publisher
    American Concrete Institute
    Type
    Article
    Article Version
    Scholarly/refereed, author accepted manuscript
    Published Version
    https://iri.ku.edu/reports
    Metadata
    Show full item record
    Abstract
    Some implications of using high-strength concrete and steel materials in reinforced concrete frame members are discussed in terms of both flexural design and behavior. Through an example, it is demonstrated that the computed sectional curvature is highly sensitive to the choice of rectangular stress block used to model compression zone stresses of high-strength concrete. Comparison of various models suggests that the use of the stress block model defined in the ACI Building Code tends to overestimate curvature for concrete strengths exceeding 12 ksi (83 MPa). In addition, recent test data are presented for flexure-dominated concrete members reinforced with high-strength steel bars. The effects of replacing Grade 60 (410) flexural reinforcement with Grade 100 (690) steel on deformation capacity, stiffness, and strength are examined. Test data support the viability of using Grade 100 (690) longitudinal reinforcement to resist loads that induce force-displacement response well into the nonlinear range.
    URI
    http://hdl.handle.net/1808/23428
    Collections
    • Infrastructure Research Institute Scholarly Works [320]
    Citation
    Cheng, M.-Y., Wibowo, L. S.B., Lequesne, R. D., Lepage, A., and Giduquio, M. B., "Deformation Capacity and Strength of RC Frame Members with High-Strength Materials," SP-311: James K. Wight: A Tribute from his Students and Colleagues. Farmington Hills, MI: American Concrete Institute, 2016, pp 15.

    Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.


    We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.


    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    Browse

    All of KU ScholarWorksCommunities & CollectionsThis Collection

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    The University of Kansas
      Contact KU ScholarWorks
    Lawrence, KS | Maps
     
    • Academics
    • Admission
    • Alumni
    • Athletics
    • Campuses
    • Giving
    • Jobs

    The University of Kansas prohibits discrimination on the basis of race, color, ethnicity, religion, sex, national origin, age, ancestry, disability, status as a veteran, sexual orientation, marital status, parental status, gender identity, gender expression and genetic information in the University’s programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Director of the Office of Institutional Opportunity and Access, IOA@ku.edu, 1246 W. Campus Road, Room 153A, Lawrence, KS, 66045, (785)864-6414, 711 TTY.

     Contact KU
    Lawrence, KS | Maps