KUKU

KU ScholarWorks

  • myKU
  • Email
  • Enroll & Pay
  • KU Directory
    • Login
    View Item 
    •   KU ScholarWorks
    • Dissertations and Theses
    • Dissertations
    • View Item
    •   KU ScholarWorks
    • Dissertations and Theses
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Numerical solutions of rough differential equations and stochastic differential equations

    Thumbnail
    View/Open
    Liu_ku_0099D_14642_DATA_1.pdf (791.3Kb)
    Issue Date
    2016-05-31
    Author
    Liu, Yanghui
    Publisher
    University of Kansas
    Format
    234 pages
    Type
    Dissertation
    Degree Level
    Ph.D.
    Discipline
    Mathematics
    Rights
    Copyright held by the author.
    Metadata
    Show full item record
    Abstract
    In this dissertation, we investigate time-discrete numerical approximation schemes for rough differential equations and stochastic differential equations (SDE) driven by fractional Brownian motions (fBm). The dissertation is organized as follows. In Chapter 1, we introduce the basic settings and define time-discrete numerical approximation schemes. In Chapter 2, we consider the Euler scheme for SDEs driven by fBms. For a SDE driven by a fBm with Hurst parameter $H> \frac12$ it is known that the existing (naive) Euler scheme has the rate of convergence $n^{1-2H}$. Since the limit $H \rightarrow \frac12$ of the SDE corresponds to a Stratonovich SDE driven by standard Brownian motion, and the naive Euler scheme is the extension of the classical Euler scheme for It\^o SDEs for $H=\frac12$, the convergence rate of the naive Euler scheme deteriorates for $H \rightarrow \frac12$. The new (modified Euler) approximation scheme we are introducing in this chapter is closer to the classical Euler scheme for Stratonovich SDEs for $H=\frac12$ and it has the rate of convergence $\gamma_n^{-1}$, where $ \gamma_n=n^{ 2H-\frac12}$ when $H \frac12$ it is known that the existing (naive) Euler scheme has the rate of convergence $n^{1-2H}$. Since the limit $H \rightarrow \frac12$ of the SDE corresponds to a Stratonovich SDE driven by standard Brownian motion, and the naive Euler scheme is the extension of the classical Euler scheme for It\^o SDEs for $H=\frac12$, the convergence rate of the naive Euler scheme deteriorates for $H \rightarrow \frac12$. The new (modified Euler) approximation scheme we are introducing in this chapter is closer to the classical Euler scheme for Stratonovich SDEs for $H=\frac12$ and it has the rate of convergence $\gamma_n^{-1}$, where $ \gamma_n=n^{ 2H-\frac12}$ when $H \frac34$. Furthermore, we study the asymptotic behavior of the fluctuations of the error. More precisely, if $\{X_t, 0\le t\le T\}$ is the solution of a SDE driven by a fBm and if $\{X_t^n, 0\le t\le T\}$ is its approximation obtained by the new modified Euler scheme, then we prove that $ \gamma_n (X^n-X)$ converges stably to the solution of a linear SDE driven by a matrix-valued Brownian motion, when $H\in ( \frac12, \frac34]$. In the case $H \frac 34$, we show the $L^p$ convergence of $n(X^n_t-X_t)$ and the limiting process is identified as the solution of a linear SDE driven by a matrix-valued Rosenblatt process. The rate of weak convergence is also deduced for this scheme. We also apply our approach to the naive Euler scheme. In Chapter 3, we consider the Crank-Nicolson method for a SDE driven by a $m$-dimensional fBm. We consider the Crank-Nicolson method in three cases: (i) $m1$; (ii) $m=1$ and and the drift term is equal to non-zero; and (iii) $m=1$ and the drift term is equal to zero. We will show that the convergence rate of the Crank-Nicolson method is $n^{ 1/2-2H}$, $n^{-1/2-H}$ and $n^{-2H}$, respectively, in these three cases, and these convergence rates are exact in the sense that the error process for the Crank-Nicolson method converges to the solution of a linear SDE. Our main tools are the fractional calculus and the fourth moment theorem. In Chapter 4, we study two variations of the time-discrete Taylor schemes for rough differential equations and for stochastic differential equations driven by fractional Brownian motions. One is the incomplete Taylor scheme which excludes some terms of an Taylor scheme in its recursive computation so as to reduce the computation time. The other one is to add some deterministic terms to an incomplete Taylor scheme to improve the mean rate of convergence. Almost sure rate of convergence and $L_p$-rate of convergence are obtained for the incomplete Taylor schemes. Almost sure rate is expressed in terms of the H\"older exponents of the driving signals and the $L_p$-rate is expressed by the Hurst parameters. Our explicit expressions of the convergence rates allow us to compare different incomplete Taylor schemes, and then help us construct the best incomplete schemes, depending on that one needs the almost sure convergence or one needs $L_p$-convergence. As in the smooth case, general Taylor schemes are always complicated to deal with. The incomplete Taylor scheme is even more sophisticated to analyze. A new feature of our approach is the explicit expression of the error functions which will be easier to study. Estimates for multiple integrals and formulas for the iterated vector fields are obtained to analyze the error functions and then to obtain the rates of convergence.
    URI
    http://hdl.handle.net/1808/21866
    Collections
    • Dissertations [4660]
    • Mathematics Dissertations and Theses [179]

    Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.


    We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.


    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    Browse

    All of KU ScholarWorksCommunities & CollectionsThis Collection

    My Account

    Login

    Statistics

    View Usage Statistics

    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    The University of Kansas
      Contact KU ScholarWorks
    Lawrence, KS | Maps
     
    • Academics
    • Admission
    • Alumni
    • Athletics
    • Campuses
    • Giving
    • Jobs

    The University of Kansas prohibits discrimination on the basis of race, color, ethnicity, religion, sex, national origin, age, ancestry, disability, status as a veteran, sexual orientation, marital status, parental status, gender identity, gender expression and genetic information in the University’s programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Director of the Office of Institutional Opportunity and Access, IOA@ku.edu, 1246 W. Campus Road, Room 153A, Lawrence, KS, 66045, (785)864-6414, 711 TTY.

     Contact KU
    Lawrence, KS | Maps