Three Dimensional Jacobian Derivations And Divisor Class Groups
Issue Date
2016-05-31Author
Alkarni, Shalan
Publisher
University of Kansas
Format
60 pages
Type
Dissertation
Degree Level
Ph.D.
Discipline
Mathematics
Rights
Copyright held by the author.
Metadata
Show full item recordAbstract
In this thesis, we use P. Samuel's purely inseparable descent methods to investigate the divisor class groups of the intersections of pairs of hypersurfaces of the form $w_1^p=f$, $w_2^p=g$ in affine $5$-space with $f$, $g$ in $A=k[x,y,z]$; $k$ is an algebraically closed field of characteristic $p$ $$ $0$. This corresponds to studying the divisor class group of the kernels of three dimensional Jacobian derivations on $A$ that are regular in codimension one. Our computations focus primarily on pairs where $f$, $g$ are quadratic forms. We find results concerning the order and the type of these groups. We show that the divisor class group is a direct sum of up to three copies of $\mathbb{Z}_p$, is never trivial, and is generated by those hyperplane sections whose forms are factors of linear combinations of $f$ and $g$.
Collections
- Dissertations [4626]
- Mathematics Dissertations and Theses [179]
Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.