KUKU

KU ScholarWorks

  • myKU
  • Email
  • Enroll & Pay
  • KU Directory
    • Login
    View Item 
    •   KU ScholarWorks
    • Dissertations and Theses
    • Theses
    • View Item
    •   KU ScholarWorks
    • Dissertations and Theses
    • Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Predicting the Risk of Crystallization for Suspensions of Amorphous Spray Dried Dispersions from Structural, Thermal and Hydrophilicity Properties

    Thumbnail
    View/Open
    Ormes_ku_0099M_13503_DATA_1.pdf (10.90Mb)
    Issue Date
    2014-08-31
    Author
    Ormes, James Daniel
    Publisher
    University of Kansas
    Format
    122 pages
    Type
    Thesis
    Degree Level
    M.S.
    Discipline
    Pharmaceutical Chemistry
    Rights
    Copyright held by the author.
    Metadata
    Show full item record
    Abstract
    Suspensions of spray dried amorphous dispersions are a valuable tool for enhancing the exposure of poorly soluble compounds in preclinical animal models. However, limitations in drug supply and time/cost of manufacture in the drug discovery space make it desirable to predict the likelihood of obtaining a physically stable (free from detectable crystallization) suspension prior to synthetic scale-up and processing of a candidate compound. Background information on this topic is covered in Chapter 1. For 33.3% drug load solid dispersions in Hydroxypropylmethyl cellulose acetate succinate (HPMCAS) suspended in 0.5% Methocel + 0.25% sodium lauryl sulfate (SLS) + 5 mM HCl, a platform formulation frequently used in discovery, a 2-tiered model can be used to correctly predict the stability of 22 of 24 model compounds. First, the model considers the humidity adjusted glass transition temperature of the solid dispersion (Tg,dispersion,100% RH). For compounds where Tg,dispersion,100% RH is >30 °C, the dispersion is typically free from crystallization within 3 hours of preparation, which is attributed to a decrease in molecular mobility. 3 hours was selected as the timeframe between suspension preparation and dosing for the purpose of the present research. For compounds where Tg,dispersion,100% RH is 30 °C, the dispersion is typically free from crystallization within 3 hours of preparation, which is attributed to a decrease in molecular mobility. 3 hours was selected as the timeframe between suspension preparation and dosing for the purpose of the present research. For compounds where Tg,dispersion,100% RH is 1000 to be predicted stable) can be used to successfully predict a 3 hour shelf-life.
    URI
    http://hdl.handle.net/1808/21644
    Collections
    • Pharmaceutical Chemistry Dissertations and Theses [141]
    • Theses [3828]

    Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.


    We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.


    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    Browse

    All of KU ScholarWorksCommunities & CollectionsThis Collection

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    The University of Kansas
      Contact KU ScholarWorks
    Lawrence, KS | Maps
     
    • Academics
    • Admission
    • Alumni
    • Athletics
    • Campuses
    • Giving
    • Jobs

    The University of Kansas prohibits discrimination on the basis of race, color, ethnicity, religion, sex, national origin, age, ancestry, disability, status as a veteran, sexual orientation, marital status, parental status, gender identity, gender expression and genetic information in the University’s programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Director of the Office of Institutional Opportunity and Access, IOA@ku.edu, 1246 W. Campus Road, Room 153A, Lawrence, KS, 66045, (785)864-6414, 711 TTY.

     Contact KU
    Lawrence, KS | Maps