KUKU

KU ScholarWorks

  • myKU
  • Email
  • Enroll & Pay
  • KU Directory
    • Login
    View Item 
    •   KU ScholarWorks
    • Engineering
    • Civil, Environmental & Architectural Engineering Scholarly Works
    • View Item
    •   KU ScholarWorks
    • Engineering
    • Civil, Environmental & Architectural Engineering Scholarly Works
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Nickel solubility and precipitation in soils: a thermodynamic study

    Thumbnail
    View/Open
    Peltier_nickel_solubility2006.pdf (392.7Kb)
    Issue Date
    2006
    Author
    Peltier, Edward
    Publisher
    Clay Minerals Society
    Type
    Article
    Article Version
    Scholarly/refereed, publisher version
    Metadata
    Show full item record
    Abstract
    The formation of mixed-metal-Al layered double hydroxide (LDH) phases similar to hydrotalcite has been identified as a significant mechanism for immobilization of trace metals in some environmental systems. These precipitate phases become increasingly stable as they age, and their formation may therefore be an important pathway for sequestration of toxic metals in contaminated soils. However, the lack of thermodynamic data for LDH phases makes it difficult to model their behavior in natural systems. In this work, enthalpies of formation for Ni LDH phases with nitrate and sulfate interlayers were determined and compared to recently published data on carbonate interlayer LDHs. Differences in the identity of the anion interlayer resulted in substantial changes in the enthalpies of formation of the LDH phases, in the order of increasing enthalpy carbonate<sulfate<nitrate. Substitution of silica for carbonate resulted in an even more exothermic enthalpy of formation, confirming that silica substitution increases the stability of LDH precipitates. Both mechanical mixture and solid-solution models could be used to predict the thermodynamic properties of the LDH phases. Modeling results based on these thermodynamic data indicated that the formation of LDH phases on soil mineral substrates decreased Ni solubility compared to Ni(OH)2 over pH 5–9 when soluble Al is present in the soil substrate. Over time, both of these precipitate phases will transform to more stable Ni phyllosilicates.
    Description
    This is the published version. Copyright 2006 Clay Minerals Society
    URI
    http://hdl.handle.net/1808/18928
    DOI
    https://doi.org/10.1346/CCMN.2006.0540202
    Collections
    • Civil, Environmental & Architectural Engineering Scholarly Works [119]
    Citation
    Peltier, Edward, Ramakumar Allada, Alexandra Navrotsky, and Donald L. Sparks. "Nickel Solubility and Precipitation in Soils: A Thermodynamic Study." Clays Clay Miner. Clays and Clay Minerals 54.2 (2006): 153-64. http://dx.doi.org/10.1346/CCMN.2006.0540202

    Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.


    We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.


    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    Browse

    All of KU ScholarWorksCommunities & CollectionsThis Collection

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    The University of Kansas
      Contact KU ScholarWorks
    Lawrence, KS | Maps
     
    • Academics
    • Admission
    • Alumni
    • Athletics
    • Campuses
    • Giving
    • Jobs

    The University of Kansas prohibits discrimination on the basis of race, color, ethnicity, religion, sex, national origin, age, ancestry, disability, status as a veteran, sexual orientation, marital status, parental status, gender identity, gender expression and genetic information in the University’s programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Director of the Office of Institutional Opportunity and Access, IOA@ku.edu, 1246 W. Campus Road, Room 153A, Lawrence, KS, 66045, (785)864-6414, 711 TTY.

     Contact KU
    Lawrence, KS | Maps