Show simple item record

dc.contributor.authorAllada, Rama kumar
dc.contributor.authorPeltier, Edward
dc.contributor.authorNavrotsky, Alexandra
dc.contributor.authorCasey, William H.
dc.contributor.authorJohnson, C. Annette
dc.contributor.authorBerbeco, Hillary Thompson
dc.contributor.authorSparks, Donald L.
dc.date.accessioned2015-11-17T16:10:13Z
dc.date.available2015-11-17T16:10:13Z
dc.date.issued2006
dc.identifier.citationAllada, Rama Kumar, Edward Peltier, Alexandra Navrotsky, William H. Casey, C. Annette Johnson, Hillary Thompson Berbeco, and Donald L. Sparks. "Calorimetric Determination of the Enthalpies of Formation of Hydrotalcite-like Solids and Their Use in the Geochemical Modeling of Metals in Natural Waters." Clays Clay Miner. Clays and Clay Minerals 54.4 (2006): 409-17. http://dx.doi.org/10.1346/CCMN.2006.0540401en_US
dc.identifier.urihttp://hdl.handle.net/1808/18927
dc.descriptionThis is the published version. Copyright 2006 Clay Minerals Societyen_US
dc.description.abstractInterest in hydrotalcite-like compounds has grown due to their role in controlling the mobility of aqueous metals in the environment as well as their use as catalysts, catalyst precursors and specialty chemicals. Although these materials have been studied in a number of contexts, little is known of their thermodynamic properties. High-temperature oxide melt solution calorimetry was used to measure the standard enthalpy of formation for compounds M(II)1−xAlx(OH)2(CO3)x/2·mH2O (0.2 < x < 0.4, M(II) = Mg, Co, Ni and Zn). The enthalpy of formation of these compounds from the relevant single cation phases was also determined. The formation of HTLCs results in a 5–20 kJ/mol enthalpy stabilization from the single cation hydroxides and carbonates and water. The data are correlated to two variables: the ratio of divalent to trivalent cation in the solid (M(II)/Al) and the identity of the divalent cation. It was observed that the M(II)/Al ratio exerts a minor influence on the enthalpy of formation from single-cation phases, while greater differences in stabilization resulted from changes in the chemical nature of the divalent cation. However, the data do not support any statistically significant correlation between the composition of HTLCs and their heats of formation. Equilibrium geochemical calculations based upon the thermodynamic data illustrate the effect of HTLCs on the speciation of metals in natural waters. These calculations show that, in many cases, HTLCs form even in waters that are undersaturated with respect to the individual divalent metal hydroxides and carbonates. Phase diagrams and stability diagrams involving Ni-bearing HTLCs and the single-cation components are presented. The Ni(II) concentration as a function of pH as well as the stability diagram for the equilibrium among minerals in the CaO-NiO-Al2O3-SiO2-CO2-H2O system at 298 K are plotted.en_US
dc.publisherClay Minerals Societyen_US
dc.titleCalorimetric determination of the enthalpies of formation of hydrotalcite-like solids and their use in the geochemical modeling of metals in natural watersen_US
dc.typeArticle
kusw.kuauthorPeltier, Edward
kusw.kudepartmentCivil/Environ/Arch Engineeringen_US
dc.identifier.doi10.1346/CCMN.2006.0540401
kusw.oaversionScholarly/refereed, publisher version
kusw.oapolicyThis item does not meet KU Open Access policy criteria.
dc.rights.accessrightsopenAccess


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record