Show simple item record

dc.contributor.authorZhao, Linqin
dc.contributor.authorBrinton, Roberta Diaz
dc.date.accessioned2015-05-08T19:49:28Z
dc.date.available2015-05-08T19:49:28Z
dc.date.issued2006-03-16
dc.identifier.citationZhao, Linqin and Roberta Diaz Brinton. "Select estrogens within the complex formulation of conjugated equine estrogens (Premarin®) are protective against neurodegenerative insults: implications for a composition of estrogen therapy to promote neuronal function and prevent Alzheimer's disease." BMC Neuroscience 2006, 7:24 http://dx.doi.org/10.1186/1471-2202-7-24en_US
dc.identifier.urihttp://hdl.handle.net/1808/17670
dc.description.abstractBackground

Results of the Women's Health Initiative Memory Study (WHIMS) raised concerns regarding the timing and formulation of hormone interventions. Conjugated equine estrogens (CEE), used as the estrogen therapy in the WHIMS trial, is a complex formulation containing multiple estrogens, including several not secreted by human ovaries, as well as other biologically active steroids. Although the full spectrum of estrogenic components present in CEE has not yet been resolved, 10 estrogens have been identified. In the present study, we sought to determine which estrogenic components, at concentrations commensurate with their plasma levels achieved following a single oral dose of 0.625 mg CEE (the dose used in the WHIMS trial) in women, are neuroprotective and whether combinations of those neuroprotective estrogens provide added benefit. Further, we sought, through computer-aided modeling analyses, to investigate the potential correlation of the molecular mechanisms that conferred estrogen neuroprotection with estrogen interactions with the estrogen receptor (ER). Results

Cultured basal forebrain neurons were exposed to either β-amyloid25–35 or excitotoxic glutamate with or without pretreatment with estrogens followed by neuroprotection analyses. Three indicators of neuroprotection that rely on different aspects of neuronal damage and viability, LDH release, intracellular ATP level and MTT formazan formation, were used to assess neuroprotective efficacy. Results of these analyses indicate that the estrogens, 17α-estradiol, 17β-estradiol, equilin, 17α-dihydroequilin, equilinen, 17α-dihydroequilenin, 17β-dihydroequilenin, and Δ8,9-dehydroestrone were each significantly neuroprotective in reducing neuronal plasma membrane damage induced by glutamate excitotoxicity. Of these estrogens, 17β-estradiol and Δ8,9-dehydroestrone were effective in protecting neurons against β-amyloid25–35-induced intracellular ATP decline. Coadministration of two out of three neuroprotective estrogens, 17β-estradiol, equilin and Δ8,9-dehydroestrone, exerted greater neuroprotective efficacy than individual estrogens. Computer-aided analyses to determine structure/function relationships between the estrogenic structures and their neuroprotective activity revealed that the predicted intermolecular interactions of estrogen analogues with ER correlate to their overall neuroprotective efficacy. Conclusion

The present study provides the first documentation of the neuroprotective profile of individual estrogens contained within the complex formulation of CEE at concentrations commensurate with their plasma levels achieved after an oral administration of 0.625 mg CEE in women. Our analyses demonstrate that select estrogens within the complex formulation of CEE contribute to its neuroprotective efficacy. Moreover, our data predict that the magnitude of neuroprotection induced by individual estrogens at relatively low concentrations may be clinically undetectable and ineffective, whereas, a combination of select neuroprotective estrogens could provide an increased and clinically meaningful efficacy. More importantly, these data suggest a strategy for determining neurological efficacy and rational design and development of a composition of estrogen therapy to alleviate climacteric symptoms, promote neurological health, and prevent age-related neurodegeneration, such as AD, in postmenopausal women.
en_US
dc.description.sponsorshipThe authors acknowledge the contributions of Hsiao-Pi Chu. This work was supported by grants from the National Institutes of Aging (PO1 AG1475: Project 2) and the Kenneth T. and Eileen L. Norris Foundation to RDB.en_US
dc.publisherBMCen_US
dc.rightsThis is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
dc.rights.urihttp://creativecommons.org/licenses/by/2.0/
dc.titleSelect estrogens within the complex formulation of conjugated equine estrogens (Premarin®) are protective against neurodegenerative insults: implications for a composition of estrogen therapy to promote neuronal function and prevent Alzheimer's diseaseen_US
dc.typeArticle
kusw.kuauthorZhao, Linqin
kusw.kudepartmentDepartment of Pharmaceutical Chemistyen_US
dc.identifier.doi10.1186/1471-2202-7-24
kusw.oaversionScholarly/refereed, publisher version
kusw.oapolicyThis item does not meet KU Open Access policy criteria.
dc.rights.accessrightsopenAccess


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Except where otherwise noted, this item's license is described as: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.