ATTENTION: The software behind KU ScholarWorks is being upgraded to a new version. Starting July 15th, users will not be able to log in to the system, add items, nor make any changes until the new version is in place at the end of July. Searching for articles and opening files will continue to work while the system is being updated. If you have any questions, please contact Marianne Reed at mreed@ku.edu .

Show simple item record

dc.contributor.authorWeis, David D.
dc.contributor.authorEwing, George E.
dc.date.accessioned2014-12-18T17:33:43Z
dc.date.available2014-12-18T17:33:43Z
dc.date.issued1999-09-20
dc.identifier.citationWeis, David D.; Ewing, George E. (1999). "Water content and morphology of sodium chloride aerosol particles." Journal of Geophysical Research: Atmospheres, 104(D17):21275-21285. http://www.dx.doi.org/10.1029/1999JD900286
dc.identifier.issn0148-0227
dc.identifier.urihttp://hdl.handle.net/1808/16183
dc.descriptionThis is the publisher's version, also available electronically from http://onlinelibrary.wiley.com/doi/10.1029/1999JD900286/abstract;jsessionid=41C36E183A6316F5D3C491131615BD7A.f01t04.
dc.description.abstractSodium chloride droplets with a median diameter of ∼0.4 μm were generated in the laboratory by atomizing an aqueous solution of NaCl under ambient conditions. Infrared extinction spectra of the aerosols under controlled relative humidity (RH) ranging from 15 to 95% were obtained. The extinction spectra contained both scattering and absorption components. In order to obtain an absorption spectrum of the condensed phase H2O associated with the particulates, it was necessary to subtract from the extinction spectra the absorption by H2O vapor and the scattering by the particulates. H2O vapor subtraction was accomplished by a standard technique. A procedure using Mie theory to subtract the scattering component of the extinction spectrum is described. The absorption spectra were used to determine the water content and structure of the particulates. Above ∼50% RH the aerosols contain aqueous droplets that have not reached equilibrium with the water vapor during the timescale of the experiments (∼10 s). There is a sharp transition in water content at around 50% RH which is consistent with other measures of the recrystallization point. Below 50% RH the NaCl particles contain an anomalously large amount of H2O. Several different particle models are considered to explain the H2O content. The model in which the NaCl particles contain pockets of aqueous NaCl solution was found to be most consistent with the spectroscopic observations. The relevance of salt particle morphology and water content to atmospheric aerosol chemistry is discussed.
dc.publisherAmerican Geophysical Union
dc.titleWater content and morphology of sodium chloride aerosol particles
dc.typeArticle
kusw.kuauthorWeis, David D.
kusw.kudepartmentChemistry
dc.identifier.doi10.1029/1999JD900286
kusw.oaversionScholarly/refereed, publisher version
kusw.oapolicyThis item does not meet KU Open Access policy criteria.
dc.rights.accessrightsopenAccess


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record