KUKU

KU ScholarWorks

  • myKU
  • Email
  • Enroll & Pay
  • KU Directory
    • Login
    View Item 
    •   KU ScholarWorks
    • Chemistry
    • Chemistry Scholarly Works
    • View Item
    •   KU ScholarWorks
    • Chemistry
    • Chemistry Scholarly Works
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Density functional theory of freezing: Analysis of crystal density

    Thumbnail
    View/Open
    LairdB_JCP_1987(87)5449.pdf (551.4Kb)
    Issue Date
    1987-09-01
    Author
    Laird, Brian Bostian
    McCoy, John D.
    Haymet, A. D. J.
    Publisher
    American Institute of Physics
    Type
    Article
    Article Version
    Scholarly/refereed, publisher version
    Metadata
    Show full item record
    Abstract
    The density functional theory of freezing is used to study the liquid to crystal phase transition in the hardsphere and Lennard‐Jones systems. An important step in the calculation is the parametrization of the solid phase average single particle density ρ(r). In this work two popular parametrizations are compared. The first method is a general Fourier decomposition of the periodic solid density in which the amplitude of each (non‐symmetry‐related) Fourier component is treated as an independent parameter. The second parametrization, which is more restrictive but easier to implement, approximates the solid density as a sum of Gaussian peaks centered at the sites of a periodic lattice. The two methods give essentially identical results for the phase diagrams for the two systems studied, but the crystal density predicted by the Fourier method exhibits significant anisotropies which are excluded from the Gaussian representation by construction.
    Description
    This is the publisher's version, also available electronically from http://scitation.aip.org/content/aip/journal/jcp/87/9/10.1063/1.453663
    URI
    http://hdl.handle.net/1808/16165
    DOI
    https://doi.org/10.1063/1.453663
    ISSN
    0021-9606
    Collections
    • Chemistry Scholarly Works [616]
    Citation
    Laird, Brian Bostian; McCoy, John D.; Haymet, A. D. J. (1987). "Density functional theory of freezing: Analysis of crystal density." The Journal of Chemical Physics, 87(9):5449-5456. http://dx.doi.org/10.1063/1.453663

    Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.


    We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.


    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    Browse

    All of KU ScholarWorksCommunities & CollectionsThis Collection

    My Account

    Login

    Statistics

    View Usage Statistics

    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    The University of Kansas
      Contact KU ScholarWorks
    Lawrence, KS | Maps
     
    • Academics
    • Admission
    • Alumni
    • Athletics
    • Campuses
    • Giving
    • Jobs

    The University of Kansas prohibits discrimination on the basis of race, color, ethnicity, religion, sex, national origin, age, ancestry, disability, status as a veteran, sexual orientation, marital status, parental status, gender identity, gender expression and genetic information in the University’s programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Director of the Office of Institutional Opportunity and Access, IOA@ku.edu, 1246 W. Campus Road, Room 153A, Lawrence, KS, 66045, (785)864-6414, 711 TTY.

     Contact KU
    Lawrence, KS | Maps